論文の概要: JOGS: Joint Optimization of Pose Estimation and 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2510.26117v1
- Date: Thu, 30 Oct 2025 04:00:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.652763
- Title: JOGS: Joint Optimization of Pose Estimation and 3D Gaussian Splatting
- Title(参考訳): JOGS: Pose Estimation と 3D Gaussian Splatting の併用最適化
- Authors: Yuxuan Li, Tao Wang, Xianben Yang,
- Abstract要約: 本稿では,3次元ガウス点とカメラポーズを事前校正入力を必要とせずに協調的に最適化する統合フレームワークを提案する。
我々のアプローチは、3Dガウスパラメータを反復的に洗練し、新しいコ最適化戦略によってカメラのポーズを更新する。
提案手法は,再建品質において既存のCOLMAPフリー技術よりも優れており,標準のCOLMAPベースラインをはるかに上回っている。
- 参考スコア(独自算出の注目度): 10.35563602148445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional novel view synthesis methods heavily rely on external camera pose estimation tools such as COLMAP, which often introduce computational bottlenecks and propagate errors. To address these challenges, we propose a unified framework that jointly optimizes 3D Gaussian points and camera poses without requiring pre-calibrated inputs. Our approach iteratively refines 3D Gaussian parameters and updates camera poses through a novel co-optimization strategy, ensuring simultaneous improvements in scene reconstruction fidelity and pose accuracy. The key innovation lies in decoupling the joint optimization into two interleaved phases: first, updating 3D Gaussian parameters via differentiable rendering with fixed poses, and second, refining camera poses using a customized 3D optical flow algorithm that incorporates geometric and photometric constraints. This formulation progressively reduces projection errors, particularly in challenging scenarios with large viewpoint variations and sparse feature distributions, where traditional methods struggle. Extensive evaluations on multiple datasets demonstrate that our approach significantly outperforms existing COLMAP-free techniques in reconstruction quality, and also surpasses the standard COLMAP-based baseline in general.
- Abstract(参考訳): 従来のビュー合成手法は、しばしば計算ボトルネックを導入し、エラーを伝播するCOLMAPのような外部カメラのポーズ推定ツールに大きく依存している。
これらの課題に対処するために,事前に校正された入力を必要としない3次元ガウス点とカメラポーズを協調的に最適化する統合フレームワークを提案する。
提案手法は3次元ガウスパラメータを反復的に洗練し、カメラのポーズを新しい最適化戦略により更新する。
重要なイノベーションは、共同最適化を2つのインターリーブフェーズに分離することである。第1に、固定されたポーズで微分可能なレンダリングによって3Dガウスパラメータを更新すること、第2に、幾何学的制約と測光的制約を組み込んだカスタマイズされた3D光フローアルゴリズムを使用して、カメラのポーズを精製することである。
この定式化はプロジェクションエラーを徐々に減少させ、特に従来の手法が苦労する、大きな視点のバリエーションとスパースな特徴分布を持つ挑戦的なシナリオにおいてである。
複数のデータセットを総合的に評価した結果,提案手法は既存のCOLMAPフリー手法よりも再現性が高く,また標準のCOLMAPベースラインをはるかに上回っていることがわかった。
関連論文リスト
- Gesplat: Robust Pose-Free 3D Reconstruction via Geometry-Guided Gaussian Splatting [21.952325954391508]
本稿では、3DGSベースのフレームワークであるGesplatを紹介し、ロバストな新しいビュー合成と、未提示のスパース画像からの幾何的に一貫した再構成を可能にする。
提案手法は,他のポーズフリー手法と比較して,前方および大規模の複雑なデータセット上でより堅牢な性能を実現する。
論文 参考訳(メタデータ) (2025-10-11T08:13:46Z) - A Constrained Optimization Approach for Gaussian Splatting from Coarsely-posed Images and Noisy Lidar Point Clouds [37.043012716944496]
カメラポーズ推定と3次元再構成を同時に行うための制約付き最適化手法を提案する。
実験により,提案手法は既存の(マルチモーダル)3DGSベースラインを著しく上回ることを示した。
論文 参考訳(メタデータ) (2025-04-12T08:34:43Z) - FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction [69.63414788486578]
FreeSplatterはスケーラブルなフィードフォワードフレームワークで、キャリブレーションされていないスパースビュー画像から高品質な3Dガウシアンを生成する。
当社のアプローチでは,自己注意ブロックが情報交換を容易にする合理化トランスフォーマーアーキテクチャを採用している。
包括的データセットに基づいて,オブジェクト中心とシーンレベルの再構築のための2つの特殊な変種を開発する。
論文 参考訳(メタデータ) (2024-12-12T18:52:53Z) - USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting [45.246178004823534]
スパイクカメラは、0-1ビットストリームを40kHzで撮影する革新的なニューロモルフィックカメラとして、ますます3D再構成タスクに採用されている。
以前のスパイクベースの3D再構成アプローチでは、ケースケースのパイプラインを使うことが多い。
本稿では,スパイクに基づく画像再構成,ポーズ補正,ガウス的スプラッティングをエンドツーエンドのフレームワークに統一する,相乗的最適化フレームワーク textbfUSP-Gaussian を提案する。
論文 参考訳(メタデータ) (2024-11-15T14:15:16Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplatは、多視点画像から3Dガウスアンによってパラメータ化された3Dシーンを再構成できるフィードフォワードモデルである。
提案手法は,推定時にリアルタイムな3次元ガウス再構成を実現する。
この研究は、ポーズフリーの一般化可能な3次元再構成において大きな進歩をもたらし、実世界のシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose [44.13819148680788]
カメラポーズを伴わないスパースビュー合成のための新しい構成と最適化手法を開発した。
具体的には、単分子深度と画素を3次元の世界に投影することで、解を構築する。
タンク・アンド・テンプル・アンド・スタティック・ハイクスのデータセットに3つの広い範囲のビューで結果を示す。
論文 参考訳(メタデータ) (2024-05-06T17:36:44Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
InstantSplatは,光速でスパークビュー3Dシーンを再現する新しい手法である。
InstantSplatでは,3Dシーン表現とカメラポーズを最適化する,自己管理フレームワークを採用している。
3D-GSの従来のSfMと比較して、30倍以上の再現を達成し、視覚的品質(SSIM)を0.3755から0.7624に改善する。
論文 参考訳(メタデータ) (2024-03-29T17:29:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。