論文の概要: Predicting All-Cause Hospital Readmissions from Medical Claims Data of Hospitalised Patients
- arxiv url: http://arxiv.org/abs/2510.26188v1
- Date: Thu, 30 Oct 2025 06:54:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.69015
- Title: Predicting All-Cause Hospital Readmissions from Medical Claims Data of Hospitalised Patients
- Title(参考訳): 入院患者の医療請求データから全病棟入院を予知する
- Authors: Avinash Kadimisetty, Arun Rajagopalan, Vijendra SK,
- Abstract要約: 我々は、ロジスティック回帰、ランダムフォレスト、サポートベクターマシンを使用して、ヘルスクレームデータを分析しました。
これらのモデルは、寛解の原因となる重要な要因を特定し、患者が寛解する可能性を減らすために焦点を合わせるのに役立つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reducing preventable hospital readmissions is a national priority for payers, providers, and policymakers seeking to improve health care and lower costs. The rate of readmission is being used as a benchmark to determine the quality of healthcare provided by the hospitals. In thisproject, we have used machine learning techniques like Logistic Regression, Random Forest and Support Vector Machines to analyze the health claims data and identify demographic and medical factors that play a crucial role in predicting all-cause readmissions. As the health claims data is high dimensional, we have used Principal Component Analysis as a dimension reduction technique and used the results for building regression models. We compared and evaluated these models based on the Area Under Curve (AUC) metric. Random Forest model gave the highest performance followed by Logistic Regression and Support Vector Machine models. These models can be used to identify the crucial factors causing readmissions and help identify patients to focus on to reduce the chances of readmission, ultimately bringing down the cost and increasing the quality of healthcare provided to the patients.
- Abstract(参考訳): 医療改善と低コスト化を目指す給与者、提供者、政策立案者にとって、予防可能な病院の入院を減らすことが国家の優先事項である。
入院率は、病院が提供した医療の質を決定するための指標として使用されている。
このプロジェクトでは、ロジスティック回帰、ランダムフォレスト、サポートベクターマシンなどの機械学習技術を使用して、ヘルスクレームデータを分析し、すべての原因の読み出しを予測する上で重要な役割を果たしている人口統計学的および医療的要因を特定しました。
ヘルスクレームデータは高次元であるため、主成分分析を次元削減手法として使用し、回帰モデルの構築に使用した。
本研究では,AUC(Area Under Curve)測定値に基づいて,これらのモデルを比較し,評価した。
ランダムフォレストモデルは、ロジスティック回帰とサポートベクターマシンモデルに次いで最高性能を与えた。
これらのモデルは、寛解の原因となる重要な要因を特定し、患者が寛解する可能性を減らすために焦点を合わせるのに役立ち、最終的にはコストを下げ、患者に提供する医療の質を高めるのに役立てることができる。
関連論文リスト
- Machine Learning-Based Prediction of ICU Readmissions in Intracerebral Hemorrhage Patients: Insights from the MIMIC Databases [0.0]
脳内出血(英:cerebral hemorrhage、ICH)は、脳内出血を特徴とする生命リスクの病態である。
本研究は,集中治療のための医療情報マート(MIMIC-IIIおよびMIMIC-IV)データベースを用いて,ICU受信リスク予測モデルを開発した。
論文 参考訳(メタデータ) (2025-01-02T10:19:27Z) - Fairness in Computational Innovations: Identifying Bias in Substance Use Treatment Length of Stay Prediction Models with Policy Implications [0.477529483515826]
予測機械学習(英: Predictive Machine Learning, ML)は、医学的意思決定を強化する計算技術である。
しかし、社会的バイアスはそのようなモデルにエンコードすることができ、不利なグループの健康結果に不注意に影響を及ぼす懸念を提起する。
この問題は、物質使用障害(SUD)の治療の文脈において特に重要であり、予測モデルのバイアスは、非常に脆弱な患者の回復に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2024-12-08T06:47:23Z) - Predicting 30-Day Hospital Readmission in Medicare Patients: Insights from an LSTM Deep Learning Model [4.918444397807014]
本研究は, LSTMネットワークと機能工学を用いたメディケア病院の入院状況を分析し, コントリビューションの評価を行った。
LSTMモデルは、入院レベルおよび患者レベルのデータから時間的ダイナミクスを捉えるように設計されている。
主な特徴は、Charlson Comorbidity Index、病院の滞在時間、過去6ヶ月間の入院、人口統計学の変数は影響を受けなかった。
論文 参考訳(メタデータ) (2024-10-23T03:50:32Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Building predictive models of healthcare costs with open healthcare data [0.0]
本稿では,機械学習技術を用いた予測モデル開発手法を提案する。
我々は2016年に230万件の患者データを分析した。
私たちは、患者の診断と人口統計からコストを予測するモデルを構築しました。
論文 参考訳(メタデータ) (2023-04-05T02:12:58Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning [1.0323063834827415]
本稿では,機械学習技術を用いた重症度評価モデルの開発過程について述べる。
モデルは基本的な患者の基本的個人データのみを必要とするため、患者は自身の重症度を判断できる。
本研究の目的は、患者が自身の重症度をチェックできる医療システムを構築し、同様の重症度を持つ他の患者の過去の治療内容に基づいて、適切な診療所への訪問を通知することである。
論文 参考訳(メタデータ) (2021-09-18T19:56:27Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。