論文の概要: CorVS: Person Identification via Video Trajectory-Sensor Correspondence in a Real-World Warehouse
- arxiv url: http://arxiv.org/abs/2510.26369v1
- Date: Thu, 30 Oct 2025 11:14:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.774045
- Title: CorVS: Person Identification via Video Trajectory-Sensor Correspondence in a Real-World Warehouse
- Title(参考訳): CorVS: 実世界の倉庫におけるビデオトラジェクトリ・センサーの対応による人物識別
- Authors: Kazuma Kano, Yuki Mori, Shin Katayama, Kenta Urano, Takuro Yonezawa, Nobuo Kawaguchi,
- Abstract要約: 視覚追跡トラジェクトリとセンサ計測の対応に基づく新しいデータ駆動型人物識別手法であるCorVSを提案する。
深層学習モデルでは, 軌道とセンサのそれぞれの対について, 対応確率と信頼度を予測する。
そこで本研究では,実際の倉庫運用のためのデータセットを開発し,実世界のアプリケーションに対する手法の有効性を実証した。
- 参考スコア(独自算出の注目度): 0.3386560551295746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Worker location data is key to higher productivity in industrial sites. Cameras are a promising tool for localization in logistics warehouses since they also offer valuable environmental contexts such as package status. However, identifying individuals with only visual data is often impractical. Accordingly, several prior studies identified people in videos by comparing their trajectories and wearable sensor measurements. While this approach has advantages such as independence from appearance, the existing methods may break down under real-world conditions. To overcome this challenge, we propose CorVS, a novel data-driven person identification method based on correspondence between visual tracking trajectories and sensor measurements. Firstly, our deep learning model predicts correspondence probabilities and reliabilities for every pair of a trajectory and sensor measurements. Secondly, our algorithm matches the trajectories and sensor measurements over time using the predicted probabilities and reliabilities. We developed a dataset with actual warehouse operations and demonstrated the method's effectiveness for real-world applications.
- Abstract(参考訳): 労働者の位置情報は、工業地における生産性向上の鍵となる。
カメラは物流倉庫のローカライズに有望なツールである。
しかし、視覚的なデータしか持たない個人を特定することは現実的ではないことが多い。
そのため、いくつかの先行研究では、動画中の人物を、その軌跡とウェアラブルセンサーの測定値を比較して特定した。
このアプローチには外見から独立するといった利点があるが、既存の手法は現実世界の条件下では崩壊する可能性がある。
この課題を克服するために,視覚的トラッキングトラジェクトリとセンサ計測との対応に基づく,新しいデータ駆動型人物識別手法であるCorVSを提案する。
まず, 深層学習モデルを用いて, トラジェクトリとセンサのそれぞれの対について, 対応確率と信頼度を予測する。
第二に、予測された確率と信頼度を用いて、時間とともに軌跡とセンサの測定値とをマッチングする。
そこで本研究では,実際の倉庫運用のためのデータセットを開発し,実世界のアプリケーションに対する手法の有効性を実証した。
関連論文リスト
- Adaptive State-Space Mamba for Real-Time Sensor Data Anomaly Detection [2.922256022514318]
本稿では,リアルタイムセンサデータ異常検出のためのemphAdaptive State-Space Mambaフレームワークを提案する。
我々のアプローチは、迅速で信頼性の高い検出機能を必要とする他の時系列タスクに容易に適用できます。
論文 参考訳(メタデータ) (2025-03-26T21:37:48Z) - Learning 3D Perception from Others' Predictions [64.09115694891679]
本研究では,3次元物体検出装置を構築するための新たなシナリオについて検討する。
例えば、自動運転車が新しいエリアに入ると、その領域に最適化された検出器を持つ他の交通参加者から学ぶことができる。
論文 参考訳(メタデータ) (2024-10-03T16:31:28Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition [3.2319909486685354]
ウェアラブルセンサーによる人間の活動認識の進歩を支えている重要な問題は、多様なラベル付きトレーニングデータの利用不可能である。
本研究では,ウェアラブルセンサを用いた人間行動認識に特化して最適化された,教師なしの統計的特徴誘導拡散モデルを提案する。
平均,標準偏差,Zスコア,歪などの統計情報に拡散モデルを適用し,多種多様な合成センサデータを生成する。
論文 参考訳(メタデータ) (2023-05-30T15:12:59Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
実生活環境における高忠実な歩行者追跡は,群集動態研究において重要なツールである。
この技術が進歩するにつれて、社会においても益々有用になってきている。
歩行者追跡技術の研究と技術に成功させるためには、正確さの検証とベンチマークが不可欠である。
我々は、プライバシーに配慮した歩行者追跡技術のためのベンチマークスイートをコミュニティのオープンスタンダードに向けて提示し、議論する。
論文 参考訳(メタデータ) (2021-08-26T11:45:26Z) - On the Role of Sensor Fusion for Object Detection in Future Vehicular
Networks [25.838878314196375]
異なるセンサの組み合わせが車両の移動・運転環境の検出にどのように影響するかを評価します。
最終的な目標は、チャネルに分散するデータの量を最小限に抑える最適な設定を特定することです。
論文 参考訳(メタデータ) (2021-04-23T18:58:37Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-11-19T17:29:13Z) - Data-Driven Distributed State Estimation and Behavior Modeling in Sensor
Networks [5.817715558396024]
センサネットワークにおける状態推定と行動学習の同時学習の問題を定式化する。
本稿では,ガウス過程に基づくベイズフィルタ(GP-BayesFilters)をオンライン分散環境に拡張することで,シンプルで効果的な解を提案する。
提案手法の有効性は,マルチロボットプラットフォームから収集した合成データとデータの両方を用いて,未知の動作行動を持つ物体の追跡に評価される。
論文 参考訳(メタデータ) (2020-09-22T21:31:18Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。