論文の概要: Enhancing Sentiment Classification with Machine Learning and Combinatorial Fusion
- arxiv url: http://arxiv.org/abs/2510.27014v1
- Date: Thu, 30 Oct 2025 21:30:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 19:57:09.736764
- Title: Enhancing Sentiment Classification with Machine Learning and Combinatorial Fusion
- Title(参考訳): 機械学習とコンビネーション融合による知覚分類の強化
- Authors: Sean Patten, Pin-Yu Chen, Christina Schweikert, D. Frank Hsu,
- Abstract要約: 本稿では, Combinatorial Fusion Analysis (CFA) を用いた感情分類への新たなアプローチを提案する。
CFAは、ランクスコアの特徴関数を利用してモデル間の相違を定量化し、それらの予測を戦略的に組み合わせる認知的多様性の概念を活用する。
実験の結果,CFAはモデル多様性を効果的に計算し活用することで,従来のアンサンブル手法よりも優れていた。
- 参考スコア(独自算出の注目度): 41.99844472131922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach to sentiment classification using the application of Combinatorial Fusion Analysis (CFA) to integrate an ensemble of diverse machine learning models, achieving state-of-the-art accuracy on the IMDB sentiment analysis dataset of 97.072\%. CFA leverages the concept of cognitive diversity, which utilizes rank-score characteristic functions to quantify the dissimilarity between models and strategically combine their predictions. This is in contrast to the common process of scaling the size of individual models, and thus is comparatively efficient in computing resource use. Experimental results also indicate that CFA outperforms traditional ensemble methods by effectively computing and employing model diversity. The approach in this paper implements the combination of a transformer-based model of the RoBERTa architecture with traditional machine learning models, including Random Forest, SVM, and XGBoost.
- Abstract(参考訳): 本稿では, IMDBの感情分析データセット97.072\%の精度を達成し, 多様な機械学習モデルのアンサンブルを統合するために, コンビネーショナル・フュージョン・アナリティクス(CFA)を応用した, 感情分類への新たなアプローチを提案する。
CFAは、ランクスコアの特徴関数を利用してモデル間の相違を定量化し、それらの予測を戦略的に組み合わせる認知的多様性の概念を活用する。
これは、個々のモデルのサイズをスケールする一般的なプロセスとは対照的であり、コンピュータリソースの使用において比較的効率的である。
実験の結果,CFAはモデル多様性を効果的に計算し活用することで,従来のアンサンブル手法よりも優れていた。
本稿では,RoBERTaアーキテクチャのトランスフォーマーモデルと,ランダムフォレスト,SVM,XGBoostといった従来の機械学習モデルを組み合わせた手法を提案する。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Regularized Neural Ensemblers [55.15643209328513]
本研究では,正規化ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ランダムにベースモデル予測をドロップすることで,アンサンブルモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性の低い境界を提供し、過度な適合を減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
基礎モデルに基づく数ショットセグメンテーション(FSS)フレームワークを開発した。
具体的には、基礎モデルから暗黙的な知識を抽出し、粗い対応を構築するための簡単なアプローチを提案する。
2つの広く使われているデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-10T08:04:11Z) - Learning with MISELBO: The Mixture Cookbook [62.75516608080322]
本稿では,VampPriorとPixelCNNデコーダネットワークを用いて,フローベース階層型変分オートエンコーダ(VAE)の正規化のための変分近似を初めて提案する。
我々は、この協調行動について、VIと適応的重要度サンプリングの新たな関係を描いて説明する。
我々は、MNISTおよびFashionMNISTデータセット上の負のログ類似度の観点から、VAEアーキテクチャの最先端結果を得る。
論文 参考訳(メタデータ) (2022-09-30T15:01:35Z) - The effectiveness of factorization and similarity blending [0.0]
CF(Collaborative Filtering)は、過去のユーザの好みデータを活用して行動パターンを特定し、カスタムレコメンデーションを予測するテクニックである。
因子分解と類似性に基づくアプローチを組み合わせることで,スタンドアローンモデルにおける誤差の顕著な減少(-9.4%)が期待できることを示す。
本稿では,従来のアルゴリズムの複雑さを一貫して低減する類似性モデルSCSRの新たな拡張を提案する。
論文 参考訳(メタデータ) (2022-09-16T13:11:27Z) - A Cognitive Study on Semantic Similarity Analysis of Large Corpora: A
Transformer-based Approach [0.0]
我々は,従来の技術とトランスフォーマー技術の両方を用いて,米国特許法とPhrase Matchingデータセットのセマンティック類似性解析とモデリングを行う。
実験の結果,従来の手法と比較して手法の性能が向上し,平均ピアソン相関スコアは0.79。
論文 参考訳(メタデータ) (2022-07-24T11:06:56Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - Ensemble Learning-Based Approach for Improving Generalization Capability
of Machine Reading Comprehension Systems [0.7614628596146599]
機械読み取り(MRC)は、近年、多くの開発が成功した自然言語処理の活発な分野である。
分布精度が高いにもかかわらず、これらのモデルには2つの問題がある。
本稿では,大規模モデルを再学習することなく,MCCシステムの一般化を改善するためのアンサンブル学習手法の効果について検討する。
論文 参考訳(メタデータ) (2021-07-01T11:11:17Z) - Hybrid Method Based on NARX models and Machine Learning for Pattern
Recognition [0.0]
本研究は,機械学習とシステム識別の方法論を統合した新しい手法を提案する。
本手法の効率は,機械学習におけるケーススタディにより検証され,古典的分類アルゴリズムと比較して絶対的な結果が得られた。
論文 参考訳(メタデータ) (2021-06-08T00:17:36Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
本稿では,正規化とアンサンブル技術を融合した高次元バイナリ分類手法を提案する。
医学ゲノミクスの応用において,本手法は競合する手法によって見落とされた重要なバイオマーカーを同定する。
論文 参考訳(メタデータ) (2021-02-17T05:57:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。