論文の概要: Learning Generalizable Visuomotor Policy through Dynamics-Alignment
- arxiv url: http://arxiv.org/abs/2510.27114v1
- Date: Fri, 31 Oct 2025 02:29:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 17:52:15.955845
- Title: Learning Generalizable Visuomotor Policy through Dynamics-Alignment
- Title(参考訳): ダイナミクスアライメントによる一般化可能なビズモータ政策の学習
- Authors: Dohyeok Lee, Jung Min Lee, Munkyung Kim, Seokhun Ju, Jin Woo Koo, Kyungjae Lee, Dohyeong Kim, TaeHyun Cho, Jungwoo Lee,
- Abstract要約: ビデオ予測モデルを利用した最近のアプローチは、大規模データセットからリッチな表現を学習することで、有望な結果を示している。
本稿では,ダイナミックス予測をポリシ学習に統合するDAP(Dynamics-Aligned Flow Matching Policy)を提案する。
提案手法では,ポリシーモデルと動的モデルが相互に行動生成のフィードバックを与え,自己補正を実現し,一般化を向上するアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 13.655111993491674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Behavior cloning methods for robot learning suffer from poor generalization due to limited data support beyond expert demonstrations. Recent approaches leveraging video prediction models have shown promising results by learning rich spatiotemporal representations from large-scale datasets. However, these models learn action-agnostic dynamics that cannot distinguish between different control inputs, limiting their utility for precise manipulation tasks and requiring large pretraining datasets. We propose a Dynamics-Aligned Flow Matching Policy (DAP) that integrates dynamics prediction into policy learning. Our method introduces a novel architecture where policy and dynamics models provide mutual corrective feedback during action generation, enabling self-correction and improved generalization. Empirical validation demonstrates generalization performance superior to baseline methods on real-world robotic manipulation tasks, showing particular robustness in OOD scenarios including visual distractions and lighting variations.
- Abstract(参考訳): ロボット学習のための行動クローニング手法は、専門家によるデモンストレーション以上のデータサポートが限られているため、一般化の難しさに悩まされている。
ビデオ予測モデルを利用した最近のアプローチは、大規模データセットから豊富な時空間表現を学習することで、有望な結果を示している。
しかし、これらのモデルは、異なる制御入力を区別できないアクション非依存のダイナミクスを学習し、正確な操作タスクのためのユーティリティを制限し、大規模な事前トレーニングデータセットを必要とする。
本稿では,ダイナミックス予測を政策学習に統合するDAP(Dynamics-Aligned Flow Matching Policy)を提案する。
提案手法では,ポリシーモデルと動的モデルが相互に行動生成のフィードバックを与え,自己補正を実現し,一般化を向上するアーキテクチャを提案する。
実世界のロボット操作タスクのベースライン手法よりも優れた一般化性能を示し、視覚的注意散らしや照明のバリエーションを含むOODシナリオにおいて、特に堅牢性を示す。
関連論文リスト
- Learning from Reward-Free Offline Data: A Case for Planning with Latent Dynamics Models [79.2162092822111]
我々は,一連のナビゲーションタスクにおいて,強化学習(RL)と制御に基づく手法を体系的に評価する。
我々は、JEPA(Joint Embedding Predictive Architecture)を使用して、潜在ダイナミクスモデルを使用し、それを計画に使用します。
その結果,モデルベースプランニングではレイアウトが不明瞭になるのに対して,モデルフリーのRLは高品質なデータから恩恵を受けることがわかった。
論文 参考訳(メタデータ) (2025-02-20T18:39:41Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
対照的な教師なし学習と介入不変正規化器を用いて不変特徴を学習する世界モデルを提案する。
提案手法は,現状のモデルベースおよびモデルフリーのRL法より優れ,iGibsonベンチマークで評価された分布外ナビゲーションタスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T15:53:07Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Continual Visual Reinforcement Learning with A Life-Long World Model [55.05017177980985]
視覚力学モデリングのための新しい連続学習手法を提案する。
まず,タスク固有の潜在ダイナミクスを学習する長寿命世界モデルを紹介する。
そして,探索・保守的行動学習手法を用いて,過去の課題に対する価値推定問題に対処する。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
ベイズ的非パラメトリック法を適用し,力学系制御の学習に挑戦する。
ガウス過程を用いて潜在世界力学を探索することにより、強化学習で観測される一般的なデータ効率の問題を緩和する。
本アルゴリズムは,ログの変動的下界を最適化することにより,世界モデルと政策を共同で学習する。
論文 参考訳(メタデータ) (2021-10-27T04:27:28Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
グラフ構造化サーロゲートモデル (GSSM) と呼ばれるモデルが, 環境ダイナミクス予測における最先端の手法を上回っていることを示した。
当社のアプローチでは,テスト時間ポリシの勾配最適化を回避して,デプロイメント中の高速実行を実現しつつ,高いリターンを得ることができる。
論文 参考訳(メタデータ) (2021-02-16T17:21:55Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
グローバルなダイナミクスモデルを学習するタスクを,(a)ローカルなダイナミクスをキャプチャするコンテキスト潜在ベクトルを学習し,(b)次に条件付き状態を予測するという2つの段階に分割する。
本研究では,コンテキスト潜在ベクトルに動的情報をエンコードするために,コンテキスト潜在ベクトルを前方と後方の両方のダイナミクスを予測するのに役立つような新しい損失関数を導入する。
提案手法は,既存のRL方式と比較して,様々なシミュレーションロボットや制御タスクの一般化能力に優れる。
論文 参考訳(メタデータ) (2020-05-14T08:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。