論文の概要: ReLaX-Net: Reusing Layers for Parameter-Efficient Physical Neural Networks
- arxiv url: http://arxiv.org/abs/2511.00044v1
- Date: Tue, 28 Oct 2025 07:25:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:26.535712
- Title: ReLaX-Net: Reusing Layers for Parameter-Efficient Physical Neural Networks
- Title(参考訳): ReLaX-Net:パラメータ効率の良い物理ニューラルネットワークのための再利用層
- Authors: Kohei Tsuchiyama, Andre Roehm, Takatomo Mihana, Ryoichi Horisaki,
- Abstract要約: 本稿では,eXpanding a Neural Network (ReLaX-Net) アーキテクチャのためのレイヤ再利用を提案する。
単純な層間時間多重化方式を用いて,有効ネットワーク深度を増大させ,パラメータ数を効率的に活用する。
この結果から,ReLaX-Netは従来のPNNにわずかな変更を加えるだけで計算性能が向上することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Physical Neural Networks (PNN) are promising platforms for next-generation computing systems. However, recent advances in digital neural network performance are largely driven by the rapid growth in the number of trainable parameters and, so far, demonstrated PNNs are lagging behind by several orders of magnitude in terms of scale. This mirrors size and performance constraints found in early digital neural networks. In that period, efficient reuse of parameters contributed to the development of parameter-efficient architectures such as convolutional neural networks. In this work, we numerically investigate hardware-friendly weight-tying for PNNs. Crucially, with many PNN systems, there is a time-scale separation between the fast dynamic active elements of the forward pass and the only slowly trainable elements implementing weights and biases. With this in mind,we propose the Reuse of Layers for eXpanding a Neural Network (ReLaX-Net) architecture, which employs a simple layer-by-layer time-multiplexing scheme to increase the effective network depth and efficiently use the number of parameters. We only require the addition of fast switches for existing PNNs. We validate ReLaX-Nets via numerical experiments on image classification and natural language processing tasks. Our results show that ReLaX-Net improves computational performance with only minor modifications to a conventional PNN. We observe a favorable scaling, where ReLaX-Nets exceed the performance of equivalent traditional RNNs or DNNs with the same number of parameters.
- Abstract(参考訳): 物理ニューラルネットワーク(PNN)は、次世代コンピューティングシステムのための有望なプラットフォームである。
しかし、近年のデジタルニューラルネットワークの性能向上は、トレーニング可能なパラメータの急速な増加に大きく寄与しており、これまでのところ、PNNはスケールの面で数桁遅れていることを実証している。
これは、初期のデジタルニューラルネットワークで見られるサイズと性能の制約を反映する。
その間、パラメータの効率的な再利用は、畳み込みニューラルネットワークのようなパラメータ効率の良いアーキテクチャの開発に寄与した。
本研究では,PNNのハードウェアフレンドリな重み付けについて数値的に検討する。
重要なことに、多くのPNNシステムでは、フォワードパスの高速な動的アクティブ要素と、ウェイトとバイアスを実装する唯一のゆっくりとしたトレーニング可能な要素との間に、タイムスケールの分離がある。
このことを念頭にして、ニューラルネットワーク(ReLaX-Net)アーキテクチャのeXpandingのためのレイヤ再利用を提案する。
既存のPNNに高速スイッチを追加するだけでよいのです。
画像分類と自然言語処理タスクに関する数値実験によりReLaX-Netsを検証する。
この結果から,ReLaX-Netは従来のPNNにわずかな変更を加えるだけで計算性能が向上することがわかった。
我々は、ReLaX-Netが、同じ数のパラメータを持つ従来のRNNやDNNの性能を上回る、好ましいスケーリングを観察する。
関連論文リスト
- Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
計算時間と空間複雑度はそれぞれ、列長に関して立方体と二次体から線形へと減少する。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Investigating Sparsity in Recurrent Neural Networks [0.0]
本論文は, プルーニングとスパースリカレントニューラルネットワークがRNNの性能に与える影響を考察することに焦点を当てる。
まず,RNNの刈り込み,RNNの性能への影響,および刈り込み後の精度回復に必要な訓練エポック数について述べる。
次に、スパースリカレントニューラルネットワークの作成と訓練を継続し、その基礎となる任意の構造の性能とグラフ特性の関係を同定する。
論文 参考訳(メタデータ) (2024-07-30T07:24:58Z) - Bayesian Inference Accelerator for Spiking Neural Networks [3.145754107337963]
スパイキングニューラルネットワーク(SNN)は、計算面積と電力を減らす可能性がある。
本研究では,効率的なベイズSNNをハードウェア上で開発・実装するための最適化フレームワークについて述べる。
我々は、完全精度のベルヌーイパラメータを持つベイジアンバイナリネットワークに匹敵するアキュラ級数を示し、最大25時間分のスパイクを減らした。
論文 参考訳(メタデータ) (2024-01-27T16:27:19Z) - Low Precision Quantization-aware Training in Spiking Neural Networks
with Differentiable Quantization Function [0.5046831208137847]
この研究は、量子化されたニューラルネットワークの最近の進歩とスパイクニューラルネットワークのギャップを埋めることを目的としている。
これは、シグモイド関数の線形結合として表される量子化関数の性能に関する広範な研究を示す。
提案した量子化関数は、4つの人気のあるベンチマーク上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-05-30T09:42:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Block-term Tensor Neural Networks [29.442026567710435]
ブロック終端テンソル層(BT層)は,CNNやRNNなどのニューラルネットワークモデルに容易に適用可能であることを示す。
CNNとRNNのBT層は、元のDNNの表現力を維持したり改善したりしながら、パラメータ数に対して非常に大きな圧縮比を達成することができる。
論文 参考訳(メタデータ) (2020-10-10T09:58:43Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - A Light-Weighted Convolutional Neural Network for Bitemporal SAR Image
Change Detection [40.58864817923371]
計算と空間の複雑さを低減するために,軽量なニューラルネットワークを提案する。
提案するネットワークでは、通常の畳み込み層を、入力と出力の間に同じ数のチャネルを保持するボトルネック層に置き換える。
両時間SAR画像の4つのセット上で、重み付けされたニューラルネットワークを検証する。
論文 参考訳(メタデータ) (2020-05-29T04:01:32Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。