論文の概要: Bayesian Inference Accelerator for Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2401.15453v1
- Date: Sat, 27 Jan 2024 16:27:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 18:13:24.447273
- Title: Bayesian Inference Accelerator for Spiking Neural Networks
- Title(参考訳): スパイクニューラルネットワークのためのベイズ推論加速器
- Authors: Prabodh Katti, Anagha Nimbekar, Chen Li, Amit Acharyya, Bashir M.
Al-Hashimi, Bipin Rajendran
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、計算面積と電力を減らす可能性がある。
本研究では,効率的なベイズSNNをハードウェア上で開発・実装するための最適化フレームワークについて述べる。
我々は、完全精度のベルヌーイパラメータを持つベイジアンバイナリネットワークに匹敵するアキュラ級数を示し、最大25時間分のスパイクを減らした。
- 参考スコア(独自算出の注目度): 3.145754107337963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian neural networks offer better estimates of model uncertainty compared
to frequentist networks. However, inference involving Bayesian models requires
multiple instantiations or sampling of the network parameters, requiring
significant computational resources. Compared to traditional deep learning
networks, spiking neural networks (SNNs) have the potential to reduce
computational area and power, thanks to their event-driven and spike-based
computational framework. Most works in literature either address frequentist
SNN models or non-spiking Bayesian neural networks. In this work, we
demonstrate an optimization framework for developing and implementing efficient
Bayesian SNNs in hardware by additionally restricting network weights to be
binary-valued to further decrease power and area consumption. We demonstrate
accuracies comparable to Bayesian binary networks with full-precision Bernoulli
parameters, while requiring up to $25\times$ less spikes than equivalent binary
SNN implementations. We show the feasibility of the design by mapping it onto
Zynq-7000, a lightweight SoC, and achieve a $6.5 \times$ improvement in
GOPS/DSP while utilizing up to 30 times less power compared to the
state-of-the-art.
- Abstract(参考訳): ベイズニューラルネットワークは、頻繁なネットワークと比較してモデル不確実性のより良い推定を提供する。
しかしながら、ベイズモデルを含む推論には複数のインスタンス化やネットワークパラメータのサンプリングが必要であり、重要な計算資源を必要とする。
従来のディープラーニングネットワークと比較して、スパイクニューラルネットワーク(SNN)は、イベント駆動およびスパイクベースの計算フレームワークのおかげで、計算領域と電力を削減する可能性がある。
ほとんどの文献では、頻繁なSNNモデルや非スパイクベイズニューラルネットワークを扱う。
本研究では,ネットワークの重み付けを2値に制限することで,効率の良いベイズSNNをハードウェアで開発・実装するための最適化フレームワークを実証する。
我々は、完全精度のベルヌーイパラメータを持つベイジアンバイナリネットワークに匹敵するアキュラ級数を示し、等価なバイナリSNN実装よりも25\times$のスパイクを要求する。
軽量なSoCであるZynq-7000にマッピングし、GOPS/DSPの6.5 \times$の改善を実現し、最先端技術と比較して最大30倍の電力を消費する可能性を示す。
関連論文リスト
- An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Model Architecture Adaption for Bayesian Neural Networks [9.978961706999833]
我々はBNNを精度と不確実性の両方に最適化する新しいネットワークアーキテクチャサーチ(NAS)を示す。
我々の実験では,探索されたモデルでは,最先端(ディープアンサンブル)と比較して,不確実性と精度が比較できる。
論文 参考訳(メタデータ) (2022-02-09T10:58:50Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNN) は、完全な精度のニューラルネットワークよりもはるかに高速で、電力効率が高いため、多くの注目を集めている。
そこで本研究では、3次内積の計算複雑性を2。
性能ギャップを軽減するために,実装に依存した3次量子化アルゴリズムを精巧に設計する。
論文 参考訳(メタデータ) (2020-08-12T04:26:18Z) - Bayesian Neural Networks at Scale: A Performance Analysis and Pruning
Study [2.3605348648054463]
本研究は,BNNを大規模にトレーニングする際の課題に対処するために,分散トレーニングを用いた高性能コンピューティングの利用について検討する。
我々は,Cray-XC40クラスタ上でのVGG-16とResnet-18モデルのトレーニング性能とスケーラビリティの比較を行った。
論文 参考訳(メタデータ) (2020-05-23T23:15:34Z) - Neural Networks and Value at Risk [59.85784504799224]
リスクしきい値推定における資産価値のモンテカルロシミュレーションを行う。
株式市場と長期債を試験資産として利用し、ニューラルネットワークについて検討する。
はるかに少ないデータでフィードされたネットワークは、大幅にパフォーマンスが悪くなっています。
論文 参考訳(メタデータ) (2020-05-04T17:41:59Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。