論文の概要: Weakly Supervised Pneumonia Localization from Chest X-Rays Using Deep Neural Network and Grad-CAM Explanations
- arxiv url: http://arxiv.org/abs/2511.00456v1
- Date: Sat, 01 Nov 2025 08:44:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:26.786187
- Title: Weakly Supervised Pneumonia Localization from Chest X-Rays Using Deep Neural Network and Grad-CAM Explanations
- Title(参考訳): 深部ニューラルネットワークとGrad-CAMによる胸部X線からの肺炎局在の監視
- Authors: Kiran Shahi, Anup Bagale,
- Abstract要約: 本研究は,胸部X線からの肺炎の分類と局在化のための弱教師付き深層学習フレームワークを提案する。
コストのかかるピクセルレベルのアノテーションの代わりに,画像レベルのラベルを用いて臨床的に意味のあるヒートマップを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a weakly supervised deep learning framework for pneumonia classification and localization from chest X-rays, utilizing Grad-CAM explanations. Instead of costly pixel-level annotations, our approach utilizes image-level labels to generate clinically meaningful heatmaps that highlight regions affected by pneumonia. We evaluate seven ImageNet-pretrained architectures ResNet-18/50, DenseNet-121, EfficientNet-B0, MobileNet-V2/V3, and ViT-B16 under identical training conditions with focal loss and patient-wise splits to prevent data leakage. Experimental results on the Kermany CXR dataset demonstrate that ResNet-18 and EfficientNet-B0 achieve the best overall test accuracy of 98\%, ROC-AUC = 0.997, and F1 = 0.987, while MobileNet-V2 provides an optimal trade-off between accuracy and computational cost. Grad-CAM visualizations confirm that the proposed models focus on clinically relevant lung regions, supporting the use of interpretable AI for radiological diagnostics. This work highlights the potential of weakly supervised explainable models that enhance pneumonia screening transparency, and clinical trust in AI-assisted medical imaging. https://github.com/kiranshahi/pneumonia-analysis
- Abstract(参考訳): 本研究は,Grad-CAM法を用いて,胸部X線からの肺炎分類と局所化のための弱教師付き深層学習フレームワークを提案する。
コストの高いピクセルレベルのアノテーションの代わりに、画像レベルのラベルを使用して、肺炎の影響を受けた領域をハイライトする臨床的に有意義なヒートマップを生成する。
ResNet-18/50, DenseNet-121, EfficientNet-B0, MobileNet-V2/V3, ViT-B16 の 7 つのImageNet-pretrained Architecture の評価を行った。
Kermany CXRデータセットの実験結果によると、ResNet-18とEfficientNet-B0は98\%、ROC-AUC = 0.997、F1 = 0.987、MobileNet-V2は精度と計算コストの最適なトレードオフを提供する。
Grad-CAMの可視化では、提案されたモデルは臨床的に関連する肺領域に焦点を当てており、放射線診断における解釈可能なAIの使用をサポートすることが確認されている。
この研究は、肺炎スクリーニングの透明性を高め、AI支援医療画像に対する臨床信頼を高める弱教師付き説明可能なモデルの可能性を強調している。
https://github.com/kiranshahi/pneumonia-analysis
関連論文リスト
- LightPneumoNet: Lightweight Pneumonia Classifier [0.0]
この研究では、スクラッチから構築された効率的で軽量な畳み込みニューラルネットワーク(CNN)であるLightPneumoNetを紹介した。
胸部X線画像5,856枚を用いて実験を行った。
独立テストセットでは,本モデルが優れた性能を示し,総合精度0.942,精度0.92,F1スコア0.96を実現した。
論文 参考訳(メタデータ) (2025-10-13T10:14:17Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - CXR-Net: An Encoder-Decoder-Encoder Multitask Deep Neural Network for
Explainable and Accurate Diagnosis of COVID-19 pneumonia with Chest X-ray
Images [2.2098092675263423]
そこで本研究では,CXRNetを用いた新型コロナウイルス検出のための新しいディープラーニングフレームワークを提案する。
提案するフレームワークは,新しいマルチタスクアーキテクチャに基づいており,疾患の分類と視覚的説明が可能である。
実験結果から,提案手法は良好な精度が得られることが示された。
論文 参考訳(メタデータ) (2021-10-20T22:50:35Z) - Exploration of Interpretability Techniques for Deep COVID-19
Classification using Chest X-ray Images [10.01138352319106]
5種類のディープラーニングモデル(ResNet18、ResNet34、InceptionV3、InceptionResNetV2、DenseNet161)とそれらのEnsembleは、Chest X-Ray画像を用いて、新型コロナウイルス、肺炎、健康な被験者を分類するために使用されている。
新型コロナウイルスの分類における平均的なMicro-F1スコアは0.66から0.875の範囲で、ネットワークモデルのアンサンブルは0.89である。
論文 参考訳(メタデータ) (2020-06-03T22:55:53Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
新型コロナウイルスは肺炎に似た呼吸器症候群である。
科学者、研究者、医療専門家は、肺感染症の特定によって、新型コロナウイルスの迅速かつ自動化された診断に貢献している。
本稿では,様々な最先端ディープラーニング手法における非バイアスの微調整学習(トランスファーラーニング)に対するランダムなオーバーサンプリングと重み付きクラス損失関数アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-23T10:24:34Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z) - Detection of Coronavirus (COVID-19) Associated Pneumonia based on
Generative Adversarial Networks and a Fine-Tuned Deep Transfer Learning Model
using Chest X-ray Dataset [4.664495510551646]
本稿では, 限られたデータセットに対して, 微調整深層移動学習を施したGANを用いた肺炎胸部X線検出法を提案する。
この研究で使用されるデータセットは、正常と肺炎の2つのカテゴリを持つ5863のX線画像で構成されている。
論文 参考訳(メタデータ) (2020-04-02T08:14:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。