論文の概要: HarnessLLM: Automatic Testing Harness Generation via Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2511.01104v1
- Date: Sun, 02 Nov 2025 22:41:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:27.067217
- Title: HarnessLLM: Automatic Testing Harness Generation via Reinforcement Learning
- Title(参考訳): HarnessLLM:強化学習による自動テストハーネス生成
- Authors: Yujian Liu, Jiabao Ji, Yang Zhang, Wenbo Guo, Tommi Jaakkola, Shiyu Chang,
- Abstract要約: 既存のLLMベースの自動テスト生成手法は、主に入出力と期待出力のペアを生成する。
我々は、LLMがテストのためのハーネスコードを書くことができる2段階のトレーニングパイプラインであるHarnessLLMを提案する。
- 参考スコア(独自算出の注目度): 30.26598881538489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing LLM-based automatic test generation methods mainly produce input and expected output pairs to categorize the intended behavior of correct programs. Although straightforward, these methods have limited diversity in generated tests and cannot provide enough debugging information. We propose HarnessLLM, a two-stage training pipeline that enables LLMs to write harness code for testing. Particularly, LLMs generate code that synthesizes inputs and validates the observed outputs, allowing complex test cases and flexible output validation such as invariant checking. To achieve this, we train LLMs with SFT followed by RLVR with a customized reward design. Experiments show that HarnessLLM outperforms input-output-based testing in bug finding and testing strategy diversity. HarnessLLM further benefits the code generation performance through test-time scaling with our generated test cases as inference-phase validation. Our code is available at https://github.com/UCSB-NLP-Chang/HarnessLLM.git.
- Abstract(参考訳): 既存のLCMベースの自動テスト生成手法は、主に入力と期待出力のペアを生成し、正しいプログラムの意図した振る舞いを分類する。
単純ではあるが、これらのメソッドは生成されたテストの多様性が限られており、十分なデバッグ情報を提供できない。
我々は、LLMがテストのためのハーネスコードを書くことができる2段階のトレーニングパイプラインであるHarnessLLMを提案する。
特に、LSMは入力を合成し、観測された出力を検証するコードを生成し、複雑なテストケースと不変チェックのような柔軟な出力検証を可能にする。
これを実現するため、SFTでLLMを訓練し、RLVRをカスタマイズした報酬設計で学習する。
HarnessLLMは、バグ発見とテスト戦略の多様性において、インプット・アウトプット・ベースのテストを上回っている。
HarnessLLMはさらに、テスト時のスケーリングを通じてコード生成のパフォーマンスを、推論フェーズの検証として、生成したテストケースで向上させます。
私たちのコードはhttps://github.com/UCSB-NLP-Chang/HarnessLLM.gitで利用可能です。
関連論文リスト
- ATGen: Adversarial Reinforcement Learning for Test Case Generation [78.48498301767079]
大きな言語モデル(LLM)はコード生成に優れていますが、その出力には微妙なバグが伴います。
既存のテスト生成方法は静的データセットに依存している。
我々は,対戦型強化学習を通じてテストケースジェネレータを訓練するフレームワークであるATGenを紹介する。
論文 参考訳(メタデータ) (2025-10-16T12:49:25Z) - Learning to Generate Unit Tests for Automated Debugging [52.63217175637201]
ユニットテスト(UT)は、コードの正確性を評価するだけでなく、大きな言語モデル(LLM)にフィードバックを提供する上でも重要な役割を果たします。
提案するUTGenは,LLMに対して,予測出力とともにエラーを示す単体テスト入力を生成することを教える。
UTGen は他の LLM ベースラインを7.59% 上回っていることを示す。
論文 参考訳(メタデータ) (2025-02-03T18:51:43Z) - Toward Automated Validation of Language Model Synthesized Test Cases using Semantic Entropy [0.5057850174013127]
現代の大規模言語モデル(LLM)ベースのプログラミングエージェントは、しばしば、生成されたコードを洗練するためにテスト実行フィードバックに依存する。
本稿では,LLMが生成したテストケースの自動検証にセマンティックエントロピーを利用する新しいフレームワークVALTESTを紹介する。
VALTESTはテストの妥当性を最大29%向上し、パス@1スコアの大幅な増加によって証明されたコード生成のパフォーマンスが向上することを示している。
論文 参考訳(メタデータ) (2024-11-13T00:07:32Z) - Do LLMs generate test oracles that capture the actual or the expected program behaviour? [7.772338538073763]
大きな言語モデル(LLM)は、開発者のようなコードやテストケースを生成するために、膨大な量のデータに基づいて訓練されています。
この調査には、開発者によって書かれ、自動生成されるテストケースと、24のオープンソースJavaリポジトリのオーラクルが含まれている。
LLMは正しいオーラクルを分類するよりもテストオーラクルを生成する方が優れており、コードが有意義なテスト名や変数名を含む場合、よりよいテストオーラクルを生成することができる。
論文 参考訳(メタデータ) (2024-10-28T15:37:06Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
大規模言語モデル(LLM)は、コード生成において顕著なブレークスルーを示している。
最近の研究は、いくつかの強力なLLMによって生成された合成データをトレーニングすることで、コードLLMを改善している。
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - Large Language Models as Test Case Generators: Performance Evaluation and Enhancement [3.5398126682962587]
大規模言語モデルが高品質なテストケースをいかに生み出すかを検討する。
本稿では,テストインプットとテストアウトプットの生成を分離するemphTestChainというマルチエージェントフレームワークを提案する。
以上の結果から,TestChainはベースラインのマージンを大きく上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-04-20T10:27:01Z) - Test-Driven Development for Code Generation [0.850206009406913]
大きな言語モデル(LLM)は、問題ステートメントから直接コードスニペットを生成する重要な機能を示している。
本稿では,テスト駆動開発(TDD)をAI支援コード生成プロセスに組み込む方法について検討する。
論文 参考訳(メタデータ) (2024-02-21T04:10:12Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Code-Aware Prompting: A study of Coverage Guided Test Generation in Regression Setting using LLM [32.44432906540792]
テスト生成における大規模言語モデルのコード認識促進戦略であるSymPromptを提案する。
SymPromptは、正しいテスト世代を5倍に増やし、CodeGen2の相対カバレッジを26%向上させる。
特に、GPT-4に適用すると、SymPromptはベースラインのプロンプト戦略に比べて2倍以上のカバレッジが向上する。
論文 参考訳(メタデータ) (2024-01-31T18:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。