論文の概要: Toward Automated Validation of Language Model Synthesized Test Cases using Semantic Entropy
- arxiv url: http://arxiv.org/abs/2411.08254v2
- Date: Tue, 29 Jul 2025 22:03:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 14:05:50.764993
- Title: Toward Automated Validation of Language Model Synthesized Test Cases using Semantic Entropy
- Title(参考訳): 意味エントロピーを用いた言語モデル合成テストケースの自動検証に向けて
- Authors: Hamed Taherkhani, Jiho Shin, Muhammad Ammar Tahir, Md Rakib Hossain Misu, Vineet Sunil Gattani, Hadi Hemmati,
- Abstract要約: 現代の大規模言語モデル(LLM)ベースのプログラミングエージェントは、しばしば、生成されたコードを洗練するためにテスト実行フィードバックに依存する。
本稿では,LLMが生成したテストケースの自動検証にセマンティックエントロピーを利用する新しいフレームワークVALTESTを紹介する。
VALTESTはテストの妥当性を最大29%向上し、パス@1スコアの大幅な増加によって証明されたコード生成のパフォーマンスが向上することを示している。
- 参考スコア(独自算出の注目度): 0.5057850174013127
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modern Large Language Model (LLM)-based programming agents often rely on test execution feedback to refine their generated code. These tests are synthetically generated by LLMs. However, LLMs may produce invalid or hallucinated test cases, which can mislead feedback loops and degrade the performance of agents in refining and improving code. This paper introduces VALTEST, a novel framework that leverages semantic entropy to automatically validate test cases generated by LLMs. Analyzing the semantic structure of test cases and computing entropy-based uncertainty measures, VALTEST trains a machine learning model to classify test cases as valid or invalid and filters out invalid test cases. Experiments on multiple benchmark datasets and various LLMs show that VALTEST not only boosts test validity by up to 29% but also improves code generation performance, as evidenced by significant increases in pass@1 scores. Our extensive experiments also reveal that semantic entropy is a reliable indicator to distinguish between valid and invalid test cases, which provides a robust solution for improving the correctness of LLM-generated test cases used in software testing and code generation.
- Abstract(参考訳): 現代の大規模言語モデル(LLM)ベースのプログラミングエージェントは、しばしば、生成されたコードを洗練するためにテスト実行フィードバックに依存する。
これらの試験はLLMによって合成的に生成される。
しかし、LCMは不正または幻覚テストケースを生成し、フィードバックループを誤解させ、コード修正や改善においてエージェントのパフォーマンスを低下させる可能性がある。
本稿では,LLMが生成したテストケースの自動検証にセマンティックエントロピーを利用する新しいフレームワークVALTESTを紹介する。
テストケースのセマンティック構造を分析し、エントロピーに基づく不確実性対策を計算し、VALTESTは、テストケースを有効または無効と分類し、無効なテストケースをフィルタリングするマシンラーニングモデルを訓練する。
複数のベンチマークデータセットと様々なLCMの実験によると、VALTESTはテストの妥当性を最大29%向上するだけでなく、パス@1スコアの大幅な増加によって証明されたコード生成のパフォーマンスも向上する。
我々の広範な実験により、セマンティックエントロピーは、有効なテストケースと無効なテストケースを区別するための信頼性の高い指標であり、ソフトウェアテストやコード生成で使用されるLCM生成テストケースの正確性を改善するための堅牢なソリューションを提供する。
関連論文リスト
- Mutation Testing via Iterative Large Language Model-Driven Scientific Debugging [10.334617290353192]
我々は,Large Language Models (LLM) が変異体に対するテストを生成する上で,科学的計算が有効かどうかを評価する。
LLMは、より良い障害検出とカバレッジを持つテストを生成する上で、Pynguinを一貫して上回っている。
重要なことは、テストケースの反復的な改善が高品質なテストスイートを実現する上で重要であるということだ。
論文 参考訳(メタデータ) (2025-03-11T08:47:13Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
本稿では,複数選択肢の内容に基づいた簡易かつ効果的なデータ漏洩検出手法を提案する。
本手法は,モデルトレーニングデータや重みを使用せずに,ブラックボックス条件下で動作することができる。
我々は,4つのベンチマークデータセットを用いて,31個の主要なオープンソースLCMのデータ漏洩の程度を評価する。
論文 参考訳(メタデータ) (2024-09-03T11:09:44Z) - Improving LLM-based Unit test generation via Template-based Repair [8.22619177301814]
単体テストは個々のプログラムユニットのバグを検出するのに不可欠だが、時間と労力を消費する。
大規模言語モデル(LLM)は、顕著な推論と生成能力を示している。
本稿では,新しい単体テスト生成法であるTestARTを提案する。
論文 参考訳(メタデータ) (2024-08-06T10:52:41Z) - Test Oracle Automation in the era of LLMs [52.69509240442899]
大規模言語モデル(LLM)は、多様なソフトウェアテストタスクに取り組むのに顕著な能力を示した。
本研究の目的は, 各種のオラクル生成時に生じる課題とともに, LLMs によるオラクルの自動化の可能性について検討することである。
論文 参考訳(メタデータ) (2024-05-21T13:19:10Z) - Large Language Models as Test Case Generators: Performance Evaluation and Enhancement [3.5398126682962587]
大規模言語モデルが高品質なテストケースをいかに生み出すかを検討する。
本稿では,テストインプットとテストアウトプットの生成を分離するemphTestChainというマルチエージェントフレームワークを提案する。
以上の結果から,TestChainはベースラインのマージンを大きく上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-04-20T10:27:01Z) - LLM-Powered Test Case Generation for Detecting Tricky Bugs [30.82169191775785]
AIDは、少なくとも正しいプログラムをターゲットにしたテスト入力とオラクルを生成する。
TrickyBugs と EvalPlus の2つの大規模データセットに対する AID の評価を行った。
その結果,AIDのリコール,精度,F1スコアは,それぞれ1.80x,2.65x,1.66xに優れていた。
論文 参考訳(メタデータ) (2024-04-16T06:20:06Z) - GPT-HateCheck: Can LLMs Write Better Functional Tests for Hate Speech Detection? [50.53312866647302]
HateCheckは、合成データに対してきめ細かいモデル機能をテストするスイートである。
GPT-HateCheckは,スクラッチからより多彩で現実的な機能テストを生成するフレームワークである。
クラウドソースのアノテーションは、生成されたテストケースが高品質であることを示しています。
論文 参考訳(メタデータ) (2024-02-23T10:02:01Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
大規模言語モデル(LLM)が生成するテストケースの有効性を,バグの発見の観点から改善するための MuTAP を導入する。
MuTAPは、プログラム・アンダー・テスト(PUT)の自然言語記述がない場合に有効なテストケースを生成することができる
提案手法は, 最大28%の人書きコードスニペットを検出できることを示す。
論文 参考訳(メタデータ) (2023-08-31T08:48:31Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z) - Detection of Coincidentally Correct Test Cases through Random Forests [1.2891210250935143]
そこで本研究では,アンサンブル学習と教師付き学習アルゴリズム,すなわちランダムフォレスト(RF)を組み合わせたハイブリッド手法を提案する。
また、偶然の正しいテストケースを、テスト状態の反転やトリミング(すなわち、計算から排除)のコスト効率良く解析する。
論文 参考訳(メタデータ) (2020-06-14T15:01:53Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList は NLP モデルをテストするためのタスクに依存しない方法論である。
CheckListには、包括的なテストのアイデアを促進する一般的な言語機能とテストタイプのマトリックスが含まれている。
ユーザスタディでは、CheckListのNLP実践者が2倍の数のテストを作成し、それのないユーザの約3倍のバグを発見しました。
論文 参考訳(メタデータ) (2020-05-08T15:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。