論文の概要: PCD-ReID: Occluded Person Re-Identification for Base Station Inspection
- arxiv url: http://arxiv.org/abs/2511.01546v1
- Date: Mon, 03 Nov 2025 13:07:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:27.265149
- Title: PCD-ReID: Occluded Person Re-Identification for Base Station Inspection
- Title(参考訳): PCD-ReID: 基地局検査における人物再同定
- Authors: Ge Gao, Zishuo Gao, Hongyan Cui, Zhiyang Jia, Zhuang Luo, ChaoPeng Liu,
- Abstract要約: 基地局環境における歩行者再識別(ReID)は,コンピュータビジョンにおいて重要な課題である。
従来のResNetベースのReIDアルゴリズムは、隠蔽に効果的に対応できないことが多い。
これらの問題に対処するために,PCD-ReID (Pedestrian Component Discrepancy) アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 15.261219925055606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Occluded pedestrian re-identification (ReID) in base station environments is a critical task in computer vision, particularly for surveillance and security applications. This task faces numerous challenges, as occlusions often obscure key body features, increasing the complexity of identification. Traditional ResNet-based ReID algorithms often fail to address occlusions effectively, necessitating new ReID methods. We propose the PCD-ReID (Pedestrian Component Discrepancy) algorithm to address these issues. The contributions of this work are as follows: To tackle the occlusion problem, we design a Transformer-based PCD network capable of extracting shared component features, such as helmets and uniforms. To mitigate overfitting on public datasets, we collected new real-world patrol surveillance images for model training, covering six months, 10,000 individuals, and over 50,000 images. Comparative experiments with existing ReID algorithms demonstrate that our model achieves a mean Average Precision (mAP) of 79.0% and a Rank-1 accuracy of 82.7%, marking a 15.9% Rank-1 improvement over ResNet50-based methods. Experimental evaluations indicate that PCD-ReID effectively achieves occlusion-aware ReID performance for personnel in tower inspection scenarios, highlighting its potential for practical deployment in surveillance and security applications.
- Abstract(参考訳): 基地局環境における歩行者再識別(ReID)は、特に監視およびセキュリティアプリケーションにおいて、コンピュータビジョンにおいて重要な課題である。
この課題は、隠蔽がしばしば重要な身体の特徴を曖昧にし、識別の複雑さを増大させるため、多くの課題に直面している。
従来のResNetベースのReIDアルゴリズムは、しばしばオクルージョンに効果的に対応できず、新しいReIDメソッドを必要とする。
これらの問題に対処するために,PCD-ReID (Pedestrian Component Discrepancy) アルゴリズムを提案する。
本研究の貢献は以下のとおりである。 閉塞問題に対処するために, ヘルメットや制服などの共通コンポーネント特徴を抽出できるトランスフォーマーベースのPCDネットワークを設計する。
公開データセットの過度な適合を緩和するため、私たちはモデルトレーニングのための新しい現実世界のパトロール監視画像を収集しました。
既存のReIDアルゴリズムとの比較実験により、我々のモデルの平均精度は79.0%、ランク1の精度は82.7%となり、ResNet50法よりも15.9%向上した。
実験により,PCD-ReIDは塔の点検シナリオにおける人員の閉塞認識型ReID性能を効果的に達成し,監視・セキュリティアプリケーションにおける実用的展開の可能性を強調した。
関連論文リスト
- CFReID: Continual Few-shot Person Re-Identification [130.5656289348812]
Lifelong ReIDは、複数のドメインにまたがる知識を漸進的に学習し、蓄積するために提案されている。
LReIDモデルは、一般にプライバシとコストの懸念のためにアクセスできない、目に見えない各ドメインの大規模ラベル付きデータでトレーニングする必要がある。
本稿では,数ショットデータを用いてモデルをインクリメンタルにトレーニングし,すべてのドメインでテストするContinual Few-shot ReIDを提案する。
論文 参考訳(メタデータ) (2025-03-24T09:17:05Z) - Exploring Stronger Transformer Representation Learning for Occluded Person Re-Identification [2.552131151698595]
我々はトランスフォーマーに基づく人物識別フレームワークであるSSSC-TransReIDを組み合わせた新しい自己監督・監督手法を提案した。
我々は、ネガティブなサンプルや追加の事前学習なしに、人物の再識別のための特徴表現を強化することができる自己教師付きコントラスト学習ブランチを設計した。
提案モデルでは, 平均平均精度(mAP) とランク1の精度において, 最先端のReID手法よりも優れたRe-ID性能が得られ, 高いマージンで性能が向上する。
論文 参考訳(メタデータ) (2024-10-21T03:17:25Z) - Self-Supervised Multi-Object Tracking For Autonomous Driving From
Consistency Across Timescales [53.55369862746357]
自己管理型マルチオブジェクトトラッカーは、生のドメイン固有データから学習できるという大きな可能性を秘めている。
しかし、その再識別精度は、監督対象よりも低い。
本稿では,複数の連続フレームから再同定特徴を自己教師付きで学習できる学習目標を提案する。
論文 参考訳(メタデータ) (2023-04-25T20:47:29Z) - Occluded Person Re-Identification via Relational Adaptive Feature
Correction Learning [8.015703163954639]
複数のカメラが捉えた画像中の被写体再識別(Re-ID)は、歩行者や物体が被写体を隠蔽しているため困難である。
既存のほとんどの手法では、ネットワークを擬似ラベルとして利用しており、エラーを起こしやすい。
本稿では,Occlusion Correction Network (OCNet) を提案する。Occlusion Correction Network (OCNet) は,リレーショナル・ウェイト・ラーニングによって特徴を補正し,外部ネットワークを使わずに多様で代表的な特徴を得られる。
論文 参考訳(メタデータ) (2022-12-09T07:48:47Z) - An Improved Person Re-identification Method by light-weight
convolutional neural network [0.0]
人物の再識別は、低解像度、様々なポーズ、照明、背景のぼやけ、オクルージョンといった課題に直面している。
本稿では,トランスファーラーニングと検証損失関数の適用により,人物の再識別を改善することを目的とする。
実験により,提案モデルはCUHK01データセットの最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-08-21T12:34:15Z) - Hierarchical and Efficient Learning for Person Re-Identification [19.172946887940874]
階層的大域的, 部分的, 回復的特徴を複数の損失結合の監督の下で学習する, 階層的, 効率的なネットワーク(HENet)を提案する。
また,RPE (Random Polygon Erasing) と呼ばれる新しいデータセット拡張手法を提案する。
論文 参考訳(メタデータ) (2020-05-18T15:45:25Z) - Transferable, Controllable, and Inconspicuous Adversarial Attacks on
Person Re-identification With Deep Mis-Ranking [83.48804199140758]
システム出力のランキングを乱す学習とミスランクの定式化を提案する。
また,新たなマルチステージネットワークアーキテクチャを開発することで,バックボックス攻撃を行う。
そこで本手法では, 異なるマルチショットサンプリングにより, 悪意のある画素数を制御することができる。
論文 参考訳(メタデータ) (2020-04-08T18:48:29Z) - Cross-Resolution Adversarial Dual Network for Person Re-Identification
and Beyond [59.149653740463435]
人物再識別(re-ID)は、同一人物の画像をカメラビューでマッチングすることを目的としている。
カメラと関心のある人の距離が異なるため、解像度ミスマッチが期待できる。
本稿では,クロスレゾリューションな人物のリIDに対処する新たな生成的対向ネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T07:21:38Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
本稿では,カメラごとの個人識別アノテーションに基づく新しい人物識別パラダイムを提案する。
これにより、最も時間がかかり、面倒なカメラ間IDラベリングプロセスがなくなる。
MATE(Multi-tAsk mulTi-labEl)Deep Learning method for intra-Camera Supervised (ICS) person re-id。
論文 参考訳(メタデータ) (2020-02-12T15:26:33Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。