論文の概要: Generative Adversarial Synthesis and Deep Feature Discrimination of Brain Tumor MRI Images
- arxiv url: http://arxiv.org/abs/2511.01574v1
- Date: Mon, 03 Nov 2025 13:42:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:27.27795
- Title: Generative Adversarial Synthesis and Deep Feature Discrimination of Brain Tumor MRI Images
- Title(参考訳): 脳腫瘍MRI画像の生成的対立合成と深部特徴識別
- Authors: Md Sumon Ali, Muzammil Behzad,
- Abstract要約: 我々は,DC-GAN(Deep Convolutional Generative Adversarial Network)を用いた合成MRIデータ作成手法を提案する。
また、合成データと実際のMRIデータを用いて脳腫瘍を分類するために、畳み込みニューラルネットワーク(CNN)を用いる。
- 参考スコア(独自算出の注目度): 0.3437656066916039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared to traditional methods, Deep Learning (DL) becomes a key technology for computer vision tasks. Synthetic data generation is an interesting use case for DL, especially in the field of medical imaging such as Magnetic Resonance Imaging (MRI). The need for this task since the original MRI data is limited. The generation of realistic medical images is completely difficult and challenging. Generative Adversarial Networks (GANs) are useful for creating synthetic medical images. In this paper, we propose a DL based methodology for creating synthetic MRI data using the Deep Convolutional Generative Adversarial Network (DC-GAN) to address the problem of limited data. We also employ a Convolutional Neural Network (CNN) classifier to classify the brain tumor using synthetic data and real MRI data. CNN is used to evaluate the quality and utility of the synthetic images. The classification result demonstrates comparable performance on real and synthetic images, which validates the effectiveness of GAN-generated images for downstream tasks.
- Abstract(参考訳): 従来の手法と比較して、ディープラーニング(DL)はコンピュータビジョンタスクの鍵となる技術となっている。
合成データ生成は、特に磁気共鳴画像(MRI)のような医療画像の分野で、DLにとって興味深いユースケースである。
元のMRIデータに制限があるため、このタスクは必要です。
現実的な医療画像の生成は完全に困難で困難です。
GAN(Generative Adversarial Networks)は、合成医療画像の作成に有用である。
本稿では,Dep Convolutional Generative Adversarial Network (DC-GAN) を用いた合成MRIデータ作成のためのDLベースの手法を提案する。
また、合成データと実際のMRIデータを用いて脳腫瘍を分類するために、畳み込みニューラルネットワーク(CNN)分類器を用いる。
CNNは合成画像の品質と有用性を評価するために使用される。
分類結果は, 実画像と合成画像に比較して高い性能を示し, 下流タスクに対するGAN生成画像の有効性を検証した。
関連論文リスト
- Cross Modality Medical Image Synthesis for Improving Liver Segmentation [1.7295922486064903]
GAN(Generative Adversarial Networks)は、ペアのトレーニングデータなしで新しいクロスドメイン画像を生成するために使用できる。
腹部CTのクロスモーダル翻訳を用いた腹部MRIの2段階合成法を提案する。
肝セグメンテーションネットワークの性能向上に寄与することを示す。
論文 参考訳(メタデータ) (2025-03-02T15:54:12Z) - MRGen: Segmentation Data Engine for Underrepresented MRI Modalities [59.61465292965639]
稀ながら臨床的に重要な画像モダリティのための医用画像分割モデルの訓練は、注釈付きデータの不足により困難である。
本稿では,データ合成における生成モデルの利用について検討する。
本稿では,テキストプロンプトとセグメンテーションマスクを条件とした医用画像合成のためのデータエンジンMRGenを提案する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
マルチモーダル脳磁気共鳴(MR)イメージングは神経科学や神経学において不可欠である。
現在のMR画像合成アプローチは、通常、特定のタスクのための独立したデータセットで訓練される。
テキスト誘導ユニバーサルMR画像合成モデルであるTUMSynについて述べる。
論文 参考訳(メタデータ) (2024-09-25T11:14:47Z) - Synthetic Brain Images: Bridging the Gap in Brain Mapping With Generative Adversarial Model [0.0]
本研究では,高忠実かつ現実的なMRI画像スライス作成にDeep Convolutional Generative Adversarial Networks (DCGAN) を用いることを検討した。
判別器ネットワークは、生成されたスライスと実際のスライスを区別するが、ジェネレータネットワークは、現実的なMRI画像スライスを合成することを学ぶ。
ジェネレータは、敵のトレーニングアプローチを通じて、実際のMRIデータを忠実に模倣するスライスを生成する能力を向上させる。
論文 参考訳(メタデータ) (2024-04-11T05:06:51Z) - Generative Adversarial Networks for Brain Images Synthesis: A Review [2.609784101826762]
医用画像において、画像合成とは、ある画像(シーケンス、モダリティ)を別の画像(シーケンス、モダリティ)から推定する過程である。
GAN(Generative Adversarial Network)は、GAN(Generative-based Deep Learning)の一種。
我々は,CTからPETへの画像合成,CTからMRIへの画像合成,PETへの画像合成,およびその逆を含む最近のGANの展開を要約した。
論文 参考訳(メタデータ) (2023-05-16T17:28:06Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - Subject-Specific Lesion Generation and Pseudo-Healthy Synthesis for
Multiple Sclerosis Brain Images [1.7328025136996081]
局所病変の特徴をモデル化するための新しい生成法を提案する。
健康な画像に合成病変を生成し、病理画像から被写体特異的な擬似健康画像を合成することができる。
提案手法は,脳画像分割ネットワークを訓練するための合成画像を生成するデータ拡張モジュールとして利用することができる。
論文 参考訳(メタデータ) (2022-08-03T15:12:55Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
本稿では,GAN(Cycle-Consistency Generative Adversarial Networks)を用いた医用画像生成のためのデータ拡張手法を提案する。
提案モデルでは,正常画像から腫瘍画像を生成することができ,腫瘍画像から正常画像を生成することもできる。
本研究では,従来のデータ拡張手法と合成画像を用いた分類モデルを用いて,実画像を用いた分類モデルを訓練する。
論文 参考訳(メタデータ) (2020-11-15T14:01:24Z) - EEG to fMRI Synthesis: Is Deep Learning a candidate? [0.913755431537592]
この研究は、脳波(EEG)ビューデータからfMRIデータを合成するために、Neural Processingから最先端の原理を使用する方法について、初めて包括的な情報を提供する。
オートエンコーダ,ジェネレータネットワーク,ペアワイズラーニングなど,最先端の合成手法の比較を行った。
結果は、fMRI脳画像マッピングに対する脳波の実現可能性を強調し、機械学習における現在の進歩の役割を指摘し、パフォーマンスをさらに向上するために、今後のコントリビューションの関連性を示す。
論文 参考訳(メタデータ) (2020-09-29T16:29:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。