論文の概要: PROPEX-RAG: Enhanced GraphRAG using Prompt-Driven Prompt Execution
- arxiv url: http://arxiv.org/abs/2511.01802v1
- Date: Mon, 03 Nov 2025 18:00:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:27.359007
- Title: PROPEX-RAG: Enhanced GraphRAG using Prompt-Driven Prompt Execution
- Title(参考訳): ProPEX-RAG: Prompt-Driven Prompt Execution を用いたGraphRAGの強化
- Authors: Tejas Sarnaik, Manan Shah, Ravi Hegde,
- Abstract要約: 本稿では, 実体抽出, 事実選択, 通過再開を促進する上で, 素早い定式化の意義を浮き彫りにした, プロンプト駆動型グラフRAGフレームワークを提案する。
我々のシステムはHotpotQAと2WikiMultiHopQAで最先端のパフォーマンスを獲得し、F1スコアは80.7%、78.9%、Recall@5スコアは97.1%、98.1%である。
- 参考スコア(独自算出の注目度): 4.1390735746263685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) has become a robust framework for enhancing Large Language Models (LLMs) with external knowledge. Recent advances in RAG have investigated graph based retrieval for intricate reasoning; however, the influence of prompt design on enhancing the retrieval and reasoning process is still considerably under-examined. In this paper, we present a prompt-driven GraphRAG framework that underscores the significance of prompt formulation in facilitating entity extraction, fact selection, and passage reranking for multi-hop question answering. Our approach creates a symbolic knowledge graph from text data by encoding entities and factual relationships as structured facts triples. We use LLMs selectively during online retrieval to perform semantic filtering and answer generation. We also use entity-guided graph traversal through Personalized PageRank (PPR) to support efficient, scalable retrieval based on the knowledge graph we built. Our system gets state-of-the-art performance on HotpotQA and 2WikiMultiHopQA, with F1 scores of 80.7% and 78.9%, and Recall@5 scores of 97.1% and 98.1%, respectively. These results show that prompt design is an important part of improving retrieval accuracy and response quality. This research lays the groundwork for more efficient and comprehensible multi-hop question-answering systems, highlighting the importance of prompt-aware graph reasoning.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は大規模言語モデル(LLM)を外部知識で拡張するための堅牢なフレームワークとなっている。
RAGの最近の進歩は、複雑な推論のためのグラフベースの検索を研究しているが、迅速な設計が検索および推論プロセスの強化に与える影響は、まだかなり過小評価されている。
本稿では,マルチホップ質問応答における実体抽出,事実選択,通過訂正の促進において,素早い定式化の意義を浮き彫りにした,プロンプト駆動型グラフRAGフレームワークを提案する。
我々のアプローチは、実体と事実関係を3重構造としてエンコードすることで、テキストデータから象徴的な知識グラフを作成する。
オンライン検索では LLM を選択的に使用し,セマンティックフィルタリングと回答生成を行う。
また、パーソナライズされたPPR(Personalized PageRank)を通じてエンティティ誘導グラフトラバースを使用して、構築した知識グラフに基づいた効率的でスケーラブルな検索をサポートします。
我々のシステムはHotpotQAと2WikiMultiHopQAで最先端のパフォーマンスを獲得し、F1スコアは80.7%、78.9%、Recall@5スコアは97.1%、98.1%である。
これらの結果は,検索精度と応答品質を向上させる上で,迅速な設計が重要であることを示している。
本研究は, より効率的で理解しやすいマルチホップ質問応答システムの基礎を築き, グラフ推論の重要性を強調した。
関連論文リスト
- Enrich-on-Graph: Query-Graph Alignment for Complex Reasoning with LLM Enriching [61.824094419641575]
大言語モデル(LLM)は知識グラフ質問応答(KGQA)のような知識集約的なシナリオにおける幻覚と事実的誤りに苦しむ
これは、構造化知識グラフ(KG)と非構造化クエリのセマンティックギャップによるもので、その焦点や構造に固有の違いが原因である。
既存の手法は通常、バニラKGの資源集約的で非スケーリング可能な推論を用いるが、このギャップを見落としている。
我々は、LLMの事前知識を活用してKGを充実させる柔軟なフレームワークEnrich-on-Graph(EoG)を提案し、グラフとクエリ間のセマンティックギャップを埋める。
論文 参考訳(メタデータ) (2025-09-25T06:48:52Z) - MIXRAG : Mixture-of-Experts Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [6.596018318578605]
Retrieval-Augmented Generation (RAG)は、推論中に外部知識ソースを組み込むことで、Large Language Models (LLM)を強化する。
既存のアプローチのほとんどは、関連するサブグラフを特定するために単一のレトリバーに依存しており、複雑なクエリのさまざまな側面をキャプチャする能力を制限する。
そこで我々は,Mixture-of-Experts Graph-RAGフレームワークであるMIXRAGを提案する。
論文 参考訳(メタデータ) (2025-09-24T02:44:57Z) - GRIL: Knowledge Graph Retrieval-Integrated Learning with Large Language Models [59.72897499248909]
本稿では,Large Language Models (LLM) を用いたエンドツーエンド学習のための新しいグラフ検索手法を提案する。
抽出したサブグラフでは, 構造的知識と意味的特徴をそれぞれ軟式トークンと言語化グラフで符号化し, LLMに注入する。
提案手法は、複雑な推論タスクに対する結合グラフ-LLM最適化の強みを検証し、最先端の性能を一貫して達成する。
論文 参考訳(メタデータ) (2025-09-20T02:38:00Z) - Cross-Granularity Hypergraph Retrieval-Augmented Generation for Multi-hop Question Answering [49.43814054718318]
マルチホップ質問応答 (MHQA) は、正しい回答を得るために複数の経路に散在する知識を統合する必要がある。
従来の検索拡張生成法(RAG)は主に粗い粒度のテキスト意味的類似性に焦点を当てている。
本稿では,HGRAG for MHQAという新しいRAG手法を提案する。
論文 参考訳(メタデータ) (2025-08-15T06:36:13Z) - Query-Aware Graph Neural Networks for Enhanced Retrieval-Augmented Generation [0.0]
検索強化生成(RAG)のための新しいグラフニューラルネットワークアーキテクチャを提案する。
提案手法は,テキストチャンク間の逐次的および意味的関係をキャプチャする,エピソードごとの知識グラフを構築する。
ユーザクエリに基づいてグラフの関連部分に動的にフォーカスするクエリ誘導プーリングを備えた拡張グラフアテンションネットワークを導入する。
論文 参考訳(メタデータ) (2025-07-25T19:42:27Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [79.75818239774952]
大きな言語モデル(LLM)は目覚ましい能力を示しているが、幻覚や時代遅れの情報といった問題に苦戦している。
Retrieval-augmented Generation (RAG) は、情報検索システム(IR)を用いて、外部知識のLLM出力を基底にすることで、これらの問題に対処する。
本稿では、検索後句における新しい推論誘導二重アライメントフレームワークであるAlign-GRAGを提案する。
論文 参考訳(メタデータ) (2025-05-22T05:15:27Z) - Divide by Question, Conquer by Agent: SPLIT-RAG with Question-Driven Graph Partitioning [18.96570718233786]
SPLIT-RAGは、質問駆動セマンティックグラフ分割と協調サブグラフ検索による制限に対処するマルチエージェントRAGフレームワークである。
革新的なフレームワークは、まずリンク情報のセマンティック分割を作成し、次にタイプ特化知識ベースを使用してマルチエージェントRAGを実現する。
属性対応グラフセグメンテーションは、知識グラフを意味的に一貫性のあるサブグラフに分割し、サブグラフが異なるクエリタイプと整合することを保証する。
階層的なマージモジュールは、論理的検証を通じて、部分グラフ由来の解答間の矛盾を解消する。
論文 参考訳(メタデータ) (2025-05-20T06:44:34Z) - Reasoning of Large Language Models over Knowledge Graphs with Super-Relations [53.14275361052276]
本稿では,ReKnoSフレームワークを提案する。
我々のフレームワークの主な利点は、スーパーリレーションを通して複数のリレーションパスを含めることである。
その結果、ReKnoSは既存の最先端ベースラインよりも優れた性能を示し、平均精度は2.92%向上した。
論文 参考訳(メタデータ) (2025-03-28T06:11:04Z) - CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs [9.718354494802002]
CG-RAG(Contextualized Graph Retrieval-Augmented Generation)は、グラフ構造に疎密な検索信号を統合する新しいフレームワークである。
まず、引用グラフの文脈グラフ表現を提案し、文書内および文書間の明示的および暗黙的な接続を効果的にキャプチャする。
次にLexical-Semantic Graph Retrieval(LeSeGR)を提案する。
第3に,検索したグラフ構造化情報を利用した文脈認識生成手法を提案する。
論文 参考訳(メタデータ) (2025-01-25T04:18:08Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。