論文の概要: Using Multi-modal Large Language Model to Boost Fireworks Algorithm's Ability in Settling Challenging Optimization Tasks
- arxiv url: http://arxiv.org/abs/2511.03137v1
- Date: Wed, 05 Nov 2025 03:01:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-06 18:19:32.305594
- Title: Using Multi-modal Large Language Model to Boost Fireworks Algorithm's Ability in Settling Challenging Optimization Tasks
- Title(参考訳): マルチモーダル大言語モデルを用いたChallenging Optimizationタスクのスケジューリングにおける花火アルゴリズムの能力向上
- Authors: Shipeng Cen, Ying Tan,
- Abstract要約: 高次元性、ブラックボックスの性質、その他の好ましくない特徴は最適化問題によって引き起こされる課題である。
本稿では,マルチモーダル大言語モデル(MLLM)を取り入れた新しいアプローチを提案する。
我々は、TSP(textittraveling Salesman problem)とEDA( textitelectronic Automation problem)の2つのタスクに焦点を当てる。
- 参考スコア(独自算出の注目度): 2.7320188728052064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As optimization problems grow increasingly complex and diverse, advancements in optimization techniques and paradigm innovations hold significant importance. The challenges posed by optimization problems are primarily manifested in their non-convexity, high-dimensionality, black-box nature, and other unfavorable characteristics. Traditional zero-order or first-order methods, which are often characterized by low efficiency, inaccurate gradient information, and insufficient utilization of optimization information, are ill-equipped to address these challenges effectively. In recent years, the rapid development of large language models (LLM) has led to substantial improvements in their language understanding and code generation capabilities. Consequently, the design of optimization algorithms leveraging large language models has garnered increasing attention from researchers. In this study, we choose the fireworks algorithm(FWA) as the basic optimizer and propose a novel approach to assist the design of the FWA by incorporating multi-modal large language model(MLLM). To put it simply, we propose the concept of Critical Part(CP), which extends FWA to complex high-dimensional tasks, and further utilizes the information in the optimization process with the help of the multi-modal characteristics of large language models. We focus on two specific tasks: the \textit{traveling salesman problem }(TSP) and \textit{electronic design automation problem} (EDA). The experimental results show that FWAs generated under our new framework have achieved or surpassed SOTA results on many problem instances.
- Abstract(参考訳): 最適化の問題はますます複雑で多様なものになりつつあり、最適化技術やパラダイムの革新の進歩は重要な意味を持つ。
最適化問題によって引き起こされる課題は、主にその非凸性、高次元性、ブラックボックスの性質、その他の好ましくない性質に現れている。
従来のゼロオーダー法や一階法は、しばしば低効率、不正確な勾配情報、最適化情報の不十分な利用によって特徴付けられるが、これらの課題に効果的に対処するには不十分である。
近年、大規模言語モデル(LLM)の急速な開発により、言語理解とコード生成能力が大幅に改善されている。
その結果,大規模言語モデルを利用した最適化アルゴリズムの設計が研究者の注目を集めている。
本研究では,花火アルゴリズム(FWA)を基本最適化器として選択し,マルチモーダル大言語モデル(MLLM)を導入してFWAの設計を支援する新しい手法を提案する。
簡単に言えば、FWAを複雑な高次元タスクに拡張するCritical Part(CP)の概念を提案し、大規模言語モデルのマルチモーダル特性の助けを借りて、最適化プロセスの情報をさらに活用する。
本稿では, 営業マン問題 (TSP) と設計自動化問題 (EDA) の2つのタスクに焦点をあてる。
実験の結果、新しいフレームワークで生成されたFWAは、多くの問題インスタンスにおいてSOTA結果を達成したか、上回った。
関連論文リスト
- Experience-Guided Reflective Co-Evolution of Prompts and Heuristics for Automatic Algorithm Design [124.54166764570972]
組合せ最適化問題は伝統的に手作りのアルゴリズムで取り組まれている。
最近の進歩は、大規模言語モデルによる自動設計の可能性を強調している。
本稿では,自動アルゴリズム設計のためのPmpt and Heuristics (EvoPH) を用いた経験進化的リフレクティブ・ガイドを提案する。
論文 参考訳(メタデータ) (2025-09-29T09:24:09Z) - Large Language Model Assisted Automated Algorithm Generation and Evolution via Meta-black-box optimization [9.184788298623062]
AwesomeDEは大規模言語モデル(LLM)をメタ最適化の戦略として活用し、人間の介入なしに制約付き進化アルゴリズムの更新ルールを生成する。
素早い設計と反復的な改良を含む重要なコンポーネントは、設計品質への影響を判断するために体系的に分析される。
実験の結果,提案手法は計算効率と解の精度で既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-09-16T17:02:24Z) - Leveraging Large Language Models to Develop Heuristics for Emerging Optimization Problems [0.0]
組合せ最適化問題は、しばしば効率的な解を生成するアルゴリズムに依存する。
人工知能の最近の進歩は、進化の枠組みを通じて生成を自動化する可能性を実証している。
本研究では,問題固有の記述を組み込んだコンテキスト進化型ヒューリスティックスフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-05T10:22:49Z) - Adaptive Optimization for Enhanced Efficiency in Large-Scale Language Model Training [3.668740611399284]
大規模言語モデル (LLM) は様々なタスクにおいて顕著な成果を上げている。
本稿では適応最適化アルゴリズムに基づく改良手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T02:17:30Z) - Reinforced In-Context Black-Box Optimization [64.25546325063272]
RIBBOは、オフラインデータからエンドツーエンドでBBOアルゴリズムを強化学習する手法である。
RIBBOは、複数の動作アルゴリズムとタスクによって生成される最適化履歴を学習するために、表現的なシーケンスモデルを使用している。
提案手法の中心となるのは,テキストレグレット・ツー・ゴートークンによる最適化履歴の増大である。
論文 参考訳(メタデータ) (2024-02-27T11:32:14Z) - SEE: Strategic Exploration and Exploitation for Cohesive In-Context Prompt Optimization [8.975505323004427]
大規模言語モデル(LLM)のための新しい結合型インコンテキストプロンプト最適化フレームワークを提案する。
SEEは、メタヒューリスティック最適化の原則を採用し、戦略的に探索と活用を行うスケーラブルで効率的なプロンプト最適化フレームワークである。
SEEは最先端のベースライン法を大幅に上回り、平均性能は13.94、計算コストは58.67である。
論文 参考訳(メタデータ) (2024-02-17T17:47:10Z) - Language Models for Business Optimisation with a Real World Case Study in Production Scheduling [3.224702011999591]
大規模言語モデル (LLM) は、様々な言語関連タスクにまたがる卓越した性能を示している。
ビジネス最適化における問題定式化を自動化するためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-22T23:45:21Z) - Large Language Models as Optimizers [106.52386531624532]
本稿では,大規模言語モデル (LLM) をプロンプトとして活用するためのシンプルで効果的な手法である Prompting (OPRO) を提案する。
各最適化ステップにおいて、LLMは、前述した値を含むプロンプトから新しい解を生成する。
OPROにより最適化された最良のプロンプトは、GSM8Kで最大8%、Big-Bench Hardタスクで最大50%向上することを示した。
論文 参考訳(メタデータ) (2023-09-07T00:07:15Z) - Gradient Vaccine: Investigating and Improving Multi-task Optimization in
Massively Multilingual Models [63.92643612630657]
本稿では、損失関数幾何学のレンズを通して多言語最適化のブラックボックスを覗き込もうとする。
最適化軌道に沿って測定された勾配類似性は重要な信号であり、言語近接とよく相関している。
そこで我々はGradient Vaccineというシンプルでスケーラブルな最適化手法を考案した。
論文 参考訳(メタデータ) (2020-10-12T17:26:34Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。