論文の概要: Generative Bayesian Filtering and Parameter Learning
- arxiv url: http://arxiv.org/abs/2511.04552v1
- Date: Thu, 06 Nov 2025 17:04:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.519996
- Title: Generative Bayesian Filtering and Parameter Learning
- Title(参考訳): 生成ベイズフィルタとパラメータ学習
- Authors: Edoardo Marcelli, Sean O'Hagan, Veronika Rockova,
- Abstract要約: 生成ベイズフィルタ(GBF)は、複素非線形および非ガウス状態空間モデルにおいて後方推論を行うための強力なフレームワークを提供する。
GBFは明示的な密度評価を必要としないため、観察や遷移分布が解析的に解析可能である場合に特に有効である。
本稿では,各変数を暗黙の完全条件分布から反復的にサンプリングすることで,明示的な密度評価を回避できるジェネレーション・ギブズ・サンプリング手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Bayesian Filtering (GBF) provides a powerful and flexible framework for performing posterior inference in complex nonlinear and non-Gaussian state-space models. Our approach extends Generative Bayesian Computation (GBC) to dynamic settings, enabling recursive posterior inference using simulation-based methods powered by deep neural networks. GBF does not require explicit density evaluations, making it particularly effective when observation or transition distributions are analytically intractable. To address parameter learning, we introduce the Generative-Gibbs sampler, which bypasses explicit density evaluation by iteratively sampling each variable from its implicit full conditional distribution. Such technique is broadly applicable and enables inference in hierarchical Bayesian models with intractable densities, including state-space models. We assess the performance of the proposed methodologies through both simulated and empirical studies, including the estimation of $\alpha$-stable stochastic volatility models. Our findings indicate that GBF significantly outperforms existing likelihood-free approaches in accuracy and robustness when dealing with intractable state-space models.
- Abstract(参考訳): 生成ベイズフィルタ(GBF)は、複雑な非線形および非ガウス状態空間モデルにおいて後方推論を行うための強力で柔軟なフレームワークを提供する。
我々のアプローチは、生成ベイズ計算(GBC)を動的設定に拡張し、ディープニューラルネットワークを利用したシミュレーションベースの手法を用いて再帰的後部推論を可能にする。
GBFは明示的な密度評価を必要としないため、観察や遷移分布が解析的に解析可能である場合に特に有効である。
パラメータ学習に対処するために、各変数を暗黙の完全条件分布から反復的にサンプリングすることで、明示的な密度評価を回避できるジェネレーション-ギブズサンプリングを導入する。
このような手法は広く適用可能であり、状態空間モデルを含む難解密度を持つ階層ベイズモデルでの推論を可能にする。
提案手法の性能をシミュレーションおよび実証実験により評価し,$\alpha$-stable 確率的ボラティリティモデルの推定を含む。
以上の結果から,GBFは,難解な状態空間モデルを扱う場合の精度と堅牢性において,既存の可能性のないアプローチを著しく上回っていることが示唆された。
関連論文リスト
- Nonparametric Data Attribution for Diffusion Models [57.820618036556084]
生成モデルのデータ属性は、個々のトレーニング例がモデル出力に与える影響を定量化する。
生成画像とトレーニング画像のパッチレベルの類似性によって影響を測定する非パラメトリック属性法を提案する。
論文 参考訳(メタデータ) (2025-10-16T03:37:16Z) - Inference-Time Scaling of Diffusion Language Models with Particle Gibbs Sampling [70.8832906871441]
我々は、モデルを再訓練することなく、所望の報酬に向けて世代を操る方法を研究する。
従来の手法では、通常は1つの認知軌道内でサンプリングやフィルタを行い、軌道レベルの改善なしに報酬をステップバイステップで最適化する。
本稿では,拡散言語モデル(PG-DLM)の粒子ギブスサンプリングについて紹介する。
論文 参考訳(メタデータ) (2025-07-11T08:00:47Z) - A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models [8.862614615192578]
本研究では,条件付き深部生成モデルの推定のための可能性に基づくアプローチの大規模サンプル特性について検討する。
その結果,条件分布を推定するための最大極大推定器の収束率を導いた。
論文 参考訳(メタデータ) (2024-10-02T20:46:21Z) - Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation [11.874729463016227]
付加雑音によって汚染された物理モデルの代理モデルを構築するための条件付き擬似可逆正規化フローを導入する。
トレーニングプロセスは、ノイズと関数に関する事前知識を必要とせずに、入出力ペアからなるデータセットを利用する。
トレーニングされたモデルでは,高い確率領域をトレーニングセットでカバーした条件付き確率密度関数からサンプルを生成することができる。
論文 参考訳(メタデータ) (2024-03-31T00:09:58Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
再サンプリングのオーバーヘッドを伴わずに分散を低減するため, GST (Gapped Straight-Through) 推定器を提案する。
この推定子は、Straight-Through Gumbel-Softmaxの本質的な性質に着想を得たものである。
実験により,提案したGST推定器は,2つの離散的な深部生成モデリングタスクの強いベースラインと比較して,優れた性能を享受できることが示された。
論文 参考訳(メタデータ) (2022-06-15T01:46:05Z) - BayesFlow can reliably detect Model Misspecification and Posterior
Errors in Amortized Bayesian Inference [0.0]
シミュレーションに基づく推論で生じるモデル誤特定のタイプを概念化し、これらの誤特定の下でベイズフローフレームワークの性能を体系的に検討する。
本稿では、潜在データ空間に確率的構造を課し、最大平均不一致(MMD)を利用して破滅的な誤特定を検知する拡張最適化手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T13:25:27Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。