論文の概要: Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation
- arxiv url: http://arxiv.org/abs/2404.00502v1
- Date: Sun, 31 Mar 2024 00:09:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 03:20:34.724894
- Title: Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation
- Title(参考訳): 不確実性伝播の定量化におけるサロゲートモデリングのための条件付き擬似可逆正規化流れ
- Authors: Minglei Yang, Pengjun Wang, Ming Fan, Dan Lu, Yanzhao Cao, Guannan Zhang,
- Abstract要約: 付加雑音によって汚染された物理モデルの代理モデルを構築するための条件付き擬似可逆正規化フローを導入する。
トレーニングプロセスは、ノイズと関数に関する事前知識を必要とせずに、入出力ペアからなるデータセットを利用する。
トレーニングされたモデルでは,高い確率領域をトレーニングセットでカバーした条件付き確率密度関数からサンプルを生成することができる。
- 参考スコア(独自算出の注目度): 11.874729463016227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a conditional pseudo-reversible normalizing flow for constructing surrogate models of a physical model polluted by additive noise to efficiently quantify forward and inverse uncertainty propagation. Existing surrogate modeling approaches usually focus on approximating the deterministic component of physical model. However, this strategy necessitates knowledge of noise and resorts to auxiliary sampling methods for quantifying inverse uncertainty propagation. In this work, we develop the conditional pseudo-reversible normalizing flow model to directly learn and efficiently generate samples from the conditional probability density functions. The training process utilizes dataset consisting of input-output pairs without requiring prior knowledge about the noise and the function. Our model, once trained, can generate samples from any conditional probability density functions whose high probability regions are covered by the training set. Moreover, the pseudo-reversibility feature allows for the use of fully-connected neural network architectures, which simplifies the implementation and enables theoretical analysis. We provide a rigorous convergence analysis of the conditional pseudo-reversible normalizing flow model, showing its ability to converge to the target conditional probability density function using the Kullback-Leibler divergence. To demonstrate the effectiveness of our method, we apply it to several benchmark tests and a real-world geologic carbon storage problem.
- Abstract(参考訳): 本研究では,重畳雑音によって汚染された物理モデルの代理モデルを構築するための条件付き擬似可逆正規化フローを導入し,前方および逆不確実性伝播を効率的に定量化する。
既存の代理モデリングアプローチは、通常、物理モデルの決定論的要素を近似することに焦点を当てる。
しかし, この手法は, 逆不確実性伝搬の定量化のための補助サンプリング法にノイズや手法の知識を必要とする。
本研究では,条件付き擬似可逆正規化フローモデルを開発し,条件付き確率密度関数からサンプルを直接学習し,効率的に生成する。
トレーニングプロセスは、ノイズと関数に関する事前知識を必要とせずに、入出力ペアからなるデータセットを利用する。
トレーニングされたモデルでは,高い確率領域をトレーニングセットでカバーした条件付き確率密度関数からサンプルを生成することができる。
さらに、擬似可逆性機能は、実装を単純化し、理論的解析を可能にする、完全に接続されたニューラルネットワークアーキテクチャの使用を可能にする。
条件付き擬似可逆正規化フローモデルの厳密な収束解析を行い、Kulback-Leibler分散を用いて目標条件付き確率密度関数に収束する能力を示す。
本手法の有効性を示すため,いくつかのベンチマークテストと実世界の炭素貯蔵問題に適用した。
関連論文リスト
- Flow-based generative models as iterative algorithms in probability space [18.701755188870823]
フローベースの生成モデルは、正確な推定、効率的なサンプリング、決定論的変換を提供する。
本チュートリアルでは,フローベース生成モデルのための直感的な数学的枠組みを提案する。
我々は,信号処理や機械学習にフローベース生成モデルを効果的に適用するために必要なツールを研究者や実践者に提供することを目的としている。
論文 参考訳(メタデータ) (2025-02-19T03:09:18Z) - Adaptivity and Convergence of Probability Flow ODEs in Diffusion Generative Models [5.064404027153094]
本稿では,その実用性で知られた拡散型サンプル装置である,確率フローODEの理論的保証の確立に寄与する。
精度の高いスコア関数推定では,確率フローODEサンプリング器は全変動距離において$O(k/T)$の収束率を達成する。
この次元自由収束速度は、通常より大きな周囲次元でスケールする既存の結果を改善する。
論文 参考訳(メタデータ) (2025-01-31T03:10:10Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
論文 参考訳(メタデータ) (2024-03-18T17:08:24Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
本稿では,深層ニューラルネットワークモデルにおける分布外データセットの探索的正規化フローを用いた簡単なアプローチを提案する。
本手法は, 流通外データと流通内データとを確実に識別できることを示す。
論文 参考訳(メタデータ) (2023-11-01T09:08:35Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
本研究では,事前訓練した非条件拡散モデルを用いて,予測サンプルをトレーニングデータ多様体に導入する手法を提案する。
我々は,超解像,着色,乱流除去,画像劣化作業におけるアプローチの有効性を実証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-12-14T17:26:35Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Quantifying the Uncertainty in Model Parameters Using Gaussian
Process-Based Markov Chain Monte Carlo: An Application to Cardiac
Electrophysiological Models [7.8316005711996235]
パーソナライズされたモデリングには,患者固有のモデルパラメータの推定が重要である。
標準マルコフ連鎖モンテカルロサンプリングは、計算不可能な繰り返しモデルシミュレーションを必要とする。
一般的な解決策は、より高速なサンプリングのためにシミュレーションモデルを計算効率の良いサロゲートに置き換えることである。
論文 参考訳(メタデータ) (2020-06-02T23:48:15Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。