論文の概要: Clinical-ComBAT: a diffusion-weighted MRI harmonization method for clinical applications
- arxiv url: http://arxiv.org/abs/2511.04871v1
- Date: Thu, 06 Nov 2025 23:18:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 21:00:44.616598
- Title: Clinical-ComBAT: a diffusion-weighted MRI harmonization method for clinical applications
- Title(参考訳): 拡散強調MRIを用いた臨床応用のための臨床ComBAT
- Authors: Gabriel Girard, Manon Edde, Félix Dumais, Yoan David, Matthieu Dumont, Guillaume Theaud, Jean-Christophe Houde, Arnaud Boré, Maxime Descoteaux, Pierre-Marc Jodoin,
- Abstract要約: そこで本研究では,実世界の臨床シナリオを対象としたCLI-ComBATを提案する。
シミュレーションおよび実データ上での有効性を実証し,拡散指標のアライメントを改善した。
- 参考スコア(独自算出の注目度): 0.680595236988602
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion-weighted magnetic resonance imaging (DW-MRI) derived scalar maps are effective for assessing neurodegenerative diseases and microstructural properties of white matter in large number of brain conditions. However, DW-MRI inherently limits the combination of data from multiple acquisition sites without harmonization to mitigate scanner-specific biases. While the widely used ComBAT method reduces site effects in research, its reliance on linear covariate relationships, homogeneous populations, fixed site numbers, and well populated sites constrains its clinical use. To overcome these limitations, we propose Clinical-ComBAT, a method designed for real-world clinical scenarios. Clinical-ComBAT harmonizes each site independently, enabling flexibility as new data and clinics are introduced. It incorporates a non-linear polynomial data model, site-specific harmonization referenced to a normative site, and variance priors adaptable to small cohorts. It further includes hyperparameter tuning and a goodness-of-fit metric for harmonization assessment. We demonstrate its effectiveness on simulated and real data, showing improved alignment of diffusion metrics and enhanced applicability for normative modeling.
- Abstract(参考訳): 拡散強調磁気共鳴画像(DW-MRI)由来のスカラーマップは、多くの脳条件下での白質の神経変性疾患および微細構造特性を評価するのに有効である。
しかし、DW-MRIは本質的に、複数の取得サイトからのデータの組み合わせをハーモニゼーションなしで制限し、スキャナ固有のバイアスを軽減する。
広く使われているComBAT法は、研究におけるサイト効果を減少させるが、線形共変量関係、同種集団、固定されたサイト数、そして人口の多いサイトへの依存は、臨床利用を制限している。
これらの制約を克服するため,実世界の臨床シナリオを対象としたCLI-ComBATを提案する。
クリニカルComBATは各サイトを独立して調和させ、新しいデータやクリニックを導入して柔軟性を実現する。
非線形多項式データモデル、標準的部位に参照されるサイト固有の調和化、小さなコホートに適応可能な分散を組み込む。
さらに、ハイパーパラメータチューニングや、調和度評価のための適合度測定も含んでいる。
シミュレーションおよび実データにおいて,拡散指標のアライメントが向上し,規範的モデリングへの適用性が向上したことを示す。
関連論文リスト
- Adapting HFMCA to Graph Data: Self-Supervised Learning for Generalizable fMRI Representations [57.054499278843856]
機能的磁気共鳴画像(fMRI)解析は、データセットのサイズが限られ、研究間でのドメインの変動が原因で大きな課題に直面している。
コンピュータビジョンにインスパイアされた従来の自己教師付き学習手法は、正と負のサンプルペアに依存することが多い。
本稿では,最近開発された階層関数最大相関アルゴリズム(HFMCA)をグラフ構造fMRIデータに適用することを提案する。
論文 参考訳(メタデータ) (2025-10-05T12:35:01Z) - LGE-Guided Cross-Modality Contrastive Learning for Gadolinium-Free Cardiomyopathy Screening in Cine CMR [51.11296719862485]
CMRを用いたガドリニウムフリー心筋症スクリーニングのためのコントラシブラーニングおよびクロスモーダルアライメントフレームワークを提案する。
CMRとLate Gadolinium Enhancement (LGE) 配列の潜伏空間を整列させることにより, 本モデルでは線維症特異的な病理組織をCMR埋め込みにエンコードする。
論文 参考訳(メタデータ) (2025-08-23T07:21:23Z) - GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models [1.0456203870202954]
この研究は、事前訓練されたGANとUnetアーキテクチャを利用した脳腫瘍セグメンテーションのための新しいフレームワークを導入する。
グローバルな異常検出モジュールと改良されたマスク生成ネットワークを組み合わせることで,腫瘍感受性領域を正確に同定する。
マルチモーダルMRIデータと合成画像拡張を用いて、ロバスト性を改善し、限られたアノテートデータセットの課題に対処する。
論文 参考訳(メタデータ) (2025-06-26T13:28:09Z) - NeuroMoE: A Transformer-Based Mixture-of-Experts Framework for Multi-Modal Neurological Disorder Classification [3.5313393560458826]
Deep Learningは最近、診断を助けるために医療データから意味のあるパターンを抽出する強力なツールとして登場した。
神経疾患を分類するための新しいトランスフォーマーベースのMixture-of-Experts(MoE)フレームワークを提案する。
我々のフレームワークは82.47%の検証精度を達成し、ベースライン法を10%以上上回っている。
論文 参考訳(メタデータ) (2025-06-17T20:40:06Z) - Fairness-Aware Data Augmentation for Cardiac MRI using Text-Conditioned Diffusion Models [1.6581402323174208]
本稿では,データセットに固有の不均衡を,合成データの生成によって緩和する手法を提案する。
我々は,患者メタデータと心臓の形状から合成したテキストを条件に,拡散確率モデルに基づく制御ネットを採用する。
本実験は,データセットの不均衡を緩和する手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2024-03-28T15:41:43Z) - ssVERDICT: Self-Supervised VERDICT-MRI for Enhanced Prostate Tumour
Characterisation [2.755232740505053]
トレーニングデータなしでVERDICT推定パラメータマップを適合させる自己教師型ニューラルネットワーク。
本研究では,SsVERDICTの性能を拡散MRIモデルに適合する2つの確立されたベースライン法と比較する。
論文 参考訳(メタデータ) (2023-09-12T14:31:33Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Federated Offline Reinforcement Learning [55.326673977320574]
マルチサイトマルコフ決定プロセスモデルを提案する。
我々は,オフラインRLを対象とした最初のフェデレーション最適化アルゴリズムを設計する。
提案アルゴリズムでは,学習ポリシーの準最適性は,データが分散していないような速度に匹敵する,理論的保証を与える。
論文 参考訳(メタデータ) (2022-06-11T18:03:26Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。