論文の概要: LGE-Guided Cross-Modality Contrastive Learning for Gadolinium-Free Cardiomyopathy Screening in Cine CMR
- arxiv url: http://arxiv.org/abs/2508.16927v1
- Date: Sat, 23 Aug 2025 07:21:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.255821
- Title: LGE-Guided Cross-Modality Contrastive Learning for Gadolinium-Free Cardiomyopathy Screening in Cine CMR
- Title(参考訳): LGE-Guided Cross-Modality Contrastive Learning for Gadolinium-free Cardiomyopathy Screening in Cine CMR
- Authors: Siqing Yuan, Yulin Wang, Zirui Cao, Yueyan Wang, Zehao Weng, Hui Wang, Lei Xu, Zixian Chen, Lei Chen, Zhong Xue, Dinggang Shen,
- Abstract要約: CMRを用いたガドリニウムフリー心筋症スクリーニングのためのコントラシブラーニングおよびクロスモーダルアライメントフレームワークを提案する。
CMRとLate Gadolinium Enhancement (LGE) 配列の潜伏空間を整列させることにより, 本モデルでは線維症特異的な病理組織をCMR埋め込みにエンコードする。
- 参考スコア(独自算出の注目度): 51.11296719862485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiomyopathy, a principal contributor to heart failure and sudden cardiac mortality, demands precise early screening. Cardiac Magnetic Resonance (CMR), recognized as the diagnostic 'gold standard' through multiparametric protocols, holds the potential to serve as an accurate screening tool. However, its reliance on gadolinium contrast and labor-intensive interpretation hinders population-scale deployment. We propose CC-CMR, a Contrastive Learning and Cross-Modal alignment framework for gadolinium-free cardiomyopathy screening using cine CMR sequences. By aligning the latent spaces of cine CMR and Late Gadolinium Enhancement (LGE) sequences, our model encodes fibrosis-specific pathology into cine CMR embeddings. A Feature Interaction Module concurrently optimizes diagnostic precision and cross-modal feature congruence, augmented by an uncertainty-guided adaptive training mechanism that dynamically calibrates task-specific objectives to ensure model generalizability. Evaluated on multi-center data from 231 subjects, CC-CMR achieves accuracy of 0.943 (95% CI: 0.886-0.986), outperforming state-of-the-art cine-CMR-only models by 4.3% while eliminating gadolinium dependency, demonstrating its clinical viability for wide range of populations and healthcare environments.
- Abstract(参考訳): 心不全や突然の心臓死亡に寄与する心筋症は、正確な早期スクリーニングを要求する。
心臓磁気共鳴(CMR)は、マルチパラメトリックプロトコルを通じて診断の「ゴールドスタンダード」として認識され、正確なスクリーニングツールとして機能する可能性を秘めている。
しかし、ガドリニウムのコントラストと労働集約的な解釈に依存しているため、人口規模の展開は妨げられる。
CMR を用いたガドリニウムフリー心筋症スクリーニングのためのコントラスト学習およびクロスモーダルアライメントフレームワークである CC-CMR を提案する。
CMRとLate Gadolinium Enhancement (LGE) 配列の潜伏空間を整列させることにより, 本モデルでは線維症特異的な病理組織をCMR埋め込みにエンコードする。
特徴相互作用モジュールは、モデルの一般化性を確保するために、タスク固有の目的を動的に校正する不確実性誘導適応学習機構によって強化された、診断精度と横断的特徴合同を同時に最適化する。
CC-CMRは231名の被験者から得られたマルチセンターデータに基づいて0.943(95% CI: 0.886-0.986)の精度を達成し、ガドリニウム依存を排除し、幅広い人口や医療環境に対する臨床効果を実証しながら、最先端のcine-CMRのみのモデルを4.3%向上させた。
関連論文リスト
- A Novel Attention-Augmented Wavelet YOLO System for Real-time Brain Vessel Segmentation on Transcranial Color-coded Doppler [49.03919553747297]
我々は,脳動脈を効率よく捉えることができるAIを利用したリアルタイムCoW自動分割システムを提案する。
Transcranial Color-coded Doppler (TCCD) を用いたAIによる脳血管セグメンテーションの事前研究は行われていない。
提案したAAW-YOLOは, 異方性および対側性CoW容器のセグメンテーションにおいて高い性能を示した。
論文 参考訳(メタデータ) (2025-08-19T14:41:22Z) - CLAIM: Clinically-Guided LGE Augmentation for Realistic and Diverse Myocardial Scar Synthesis and Segmentation [3.052913696182197]
CLAIM: textbfClinically-Guided textbfLGE textbfAugmentation for Realtextbfiiyocardial Scar Synthesis and framework。
SMILEモジュールは、臨床で採用されているAHA 17セグメントモデルで拡散ベースのジェネレータを条件に、解剖学的に一貫性があり空間的に多様な傷跡パターンで画像を合成する。
実験結果から, CLAIMは解剖学的に整合性のある傷跡パターンを生成し, ベースラインモデルと比較してDiceと実際の傷跡分布との類似性が高いことがわかった。
論文 参考訳(メタデータ) (2025-06-18T15:21:34Z) - Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study AI for ECG to CMR Translation Study [30.84196213860778]
心臓血管疾患(CVD)は世界的な死亡の原因であり、アクセス可能で正確な診断ツールを必要とする。
12個の心電図信号をCMRレベルの機能パラメータと合成画像に変換するディープラーニングフレームワークであるCardioNetsを提案する。
読者の研究では、ECGのみのCardioNetsは、ECGと実際のCMRの両方を用いて、人間の医師よりも13.9%高い精度を達成した。
論文 参考訳(メタデータ) (2024-11-19T09:09:14Z) - Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN [2.7699831151653305]
本研究は, 心臓疾患の自動診断のための, 迅速かつ正確かつ費用対効果の高い手法を提供する新しいディープラーニングアーキテクチャを開発し, 評価する。
まず,多様な畳み込みフィルタサイズを利用して人間の聴覚処理をエミュレートするマルチブランチディープ畳み込みニューラルネットワーク(MBDCN)と,特徴抽出のためのパワースペクトル入力の2つの革新的な手法を提案する。
第二に、LSTMブロックをMBDCNに統合し、時間領域の特徴抽出を改善するLong Short-Term Memory-Convolutional Neural (LSCN)モデルである。
論文 参考訳(メタデータ) (2024-07-15T13:02:54Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H\&E stained images [42.771819949806655]
CIMIL-CRCは、事前学習した特徴抽出モデルと主成分分析(PCA)を効率よく組み合わせ、全てのパッチから情報を集約することで、MSI/MSS MIL問題を解決するフレームワークである。
我々は,TCGA-CRC-DXコホートを用いたモデル開発のための5倍のクロスバリデーション実験装置を用いて,曲線下平均面積(AUC)を用いてCIMIL-CRC法の評価を行った。
論文 参考訳(メタデータ) (2024-01-29T12:56:11Z) - Anatomically-Informed Deep Learning on Contrast-Enhanced Cardiac MRI for
Scar Segmentation and Clinical Feature Extraction [6.386874708851962]
コントラスト・エンハンスメント(LGE)を用いた心臓磁気共鳴画像(CMR)による心臓の傷跡と線維化の可視化は、疾患の進行と不整脈の病態生理学的基質の定量化において最重要である。
本稿では,左室(LV)と難治/線維化分節の完全自動深層学習ソリューションと,LGE-CMRによる臨床像抽出について述べる。
この技術は、3つのカスケード畳み込みニューラルネットワークによって、生のLGE-CMR画像から心筋と線維化を分離し、解剖学的ガイドラインの中でこれらのセグメンテーションを拘束する。
論文 参考訳(メタデータ) (2020-10-21T15:43:08Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
運動画像に基づく脳-コンピュータインタフェース(MI-BCI)は、神経リハビリテーションのための画期的な技術になる可能性がある。
使用する脳波信号のノイズの性質のため、信頼性の高いBCIシステムは特徴の最適化と抽出のために特別な手順を必要とする。
論文 参考訳(メタデータ) (2020-10-13T20:50:13Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。