論文の概要: Zero-Shot Function Encoder-Based Differentiable Predictive Control
- arxiv url: http://arxiv.org/abs/2511.05757v1
- Date: Fri, 07 Nov 2025 23:02:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.562526
- Title: Zero-Shot Function Encoder-Based Differentiable Predictive Control
- Title(参考訳): ゼロショット関数エンコーダに基づく微分予測制御
- Authors: Hassan Iqbal, Xingjian Li, Tyler Ingebrand, Adam Thorpe, Krishna Kumar, Ufuk Topcu, Ján Drgoňa,
- Abstract要約: 非線形力学系のパラメトリック族に対するゼロショット適応制御のための微分可能なフレームワークを提案する。
提案手法は,関数エンコーダをベースとしたニューラルODE(FE-NODE)をシステムダイナミクスのモデリングに利用し,DPCを用いて明示的な制御ポリシのオフライン自己教師型学習を行う。
- 参考スコア(独自算出の注目度): 18.369429085503548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a differentiable framework for zero-shot adaptive control over parametric families of nonlinear dynamical systems. Our approach integrates a function encoder-based neural ODE (FE-NODE) for modeling system dynamics with a differentiable predictive control (DPC) for offline self-supervised learning of explicit control policies. The FE-NODE captures nonlinear behaviors in state transitions and enables zero-shot adaptation to new systems without retraining, while the DPC efficiently learns control policies across system parameterizations, thus eliminating costly online optimization common in classical model predictive control. We demonstrate the efficiency, accuracy, and online adaptability of the proposed method across a range of nonlinear systems with varying parametric scenarios, highlighting its potential as a general-purpose tool for fast zero-shot adaptive control.
- Abstract(参考訳): 非線形力学系のパラメトリック族に対するゼロショット適応制御のための微分可能なフレームワークを提案する。
提案手法は,関数エンコーダをベースとしたニューラルODE(FE-NODE)をシステムダイナミクスのモデリングに利用し,DPCを用いて明示的な制御ポリシのオフライン自己教師型学習を行う。
FE-NODEは状態遷移の非線形挙動を捉え、再訓練せずに新しいシステムへのゼロショット適応を可能にし、一方DPCはシステムパラメータ化の制御ポリシーを効率的に学習し、古典的なモデル予測制御に共通するコストのかかるオンライン最適化を排除する。
提案手法の効率性,精度,オンライン適応性を,様々なパラメトリックシナリオを持つ非線形システムに適用し,高速ゼロショット適応制御のための汎用ツールとしての可能性を強調した。
関連論文リスト
- Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems [4.05766189327054]
Hamiltonian-Informed Optimal Neural (Hion) コントローラは、動的システムのためのニューラルネットワークベースの新しいクラスである。
ヒオンコントローラは将来の状態を推定し、ポントリャーギンの最大原理を用いた最適制御戦略を開発する。
論文 参考訳(メタデータ) (2024-11-02T16:06:29Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Introduction to Online Control [31.67032731719622]
オンラインの非確率制御では、コスト関数と仮定された力学モデルからの摂動の両方が敵によって選択される。
目標は、ベンチマーククラスの政策から見て、最高の政策に対して低い後悔を得ることだ。
論文 参考訳(メタデータ) (2022-11-17T16:12:45Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
本稿では,非線形ロボットシステムの力学を積極的にモデル化する自己教師型学習手法を提案する。
我々のアプローチは、目に見えない飛行条件に一貫して適応することで、高いレジリエンスと一般化能力を示す。
論文 参考訳(メタデータ) (2022-10-23T00:45:05Z) - Learning Stochastic Parametric Differentiable Predictive Control
Policies [2.042924346801313]
本稿では、ニューラルネットワークポリシーの教師なし学習のための、パラメトリック微分可能予測制御(SP-DPC)と呼ばれるスケーラブルな代替手法を提案する。
SP-DPCはパラメトリック制約最適制御問題に対する決定論的近似として定式化される。
閉ループ制約と確率満足度に関するSP-DPC法を用いて学習したポリシーに関する理論的確率的保証を提供する。
論文 参考訳(メタデータ) (2022-03-02T22:46:32Z) - Deep Learning Explicit Differentiable Predictive Control Laws for
Buildings [1.4121977037543585]
未知の非線形システムに対する制約付き制御法を学習するための微分予測制御(DPC)手法を提案する。
DPCは、明示的非線形モデル予測制御(MPC)から生じるマルチパラメトリックプログラミング問題に対する近似解を提供する
論文 参考訳(メタデータ) (2021-07-25T16:47:57Z) - Learning-based Adaptive Control via Contraction Theory [7.918886297003018]
パラメトリック不確実性を有する非線形システムのための新しいディープラーニングに基づく適応制御フレームワーク、Adaptive Neural Contraction Metric (aNCM) を提案する。
aNCMは、不確実性の下でシステムの軌道の安定性と指数有界性を保証する最適適応収縮メトリックのニューラルネットワークモデルを使用する。
論文 参考訳(メタデータ) (2021-03-04T12:19:52Z) - Learning Constrained Adaptive Differentiable Predictive Control Policies
With Guarantees [1.1086440815804224]
本稿では,線形システムに対する制約付きニューラルコントロールポリシーの学習方法として,微分可能予測制御(DPC)を提案する。
我々は,モデル予測制御(MPC)損失関数の逆伝搬と,微分可能な閉ループ系力学モデルによるペナルティの制約により,直接的な政策勾配を求めるために,自動微分を用いる。
論文 参考訳(メタデータ) (2020-04-23T14:24:44Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。