論文の概要: Parametric Pareto Set Learning for Expensive Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2511.05815v1
- Date: Sat, 08 Nov 2025 03:05:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.593982
- Title: Parametric Pareto Set Learning for Expensive Multi-Objective Optimization
- Title(参考訳): 余剰多目的最適化のためのパラメトリックパレートセット学習
- Authors: Ji Cheng, Bo Xue, Qingfu Zhang,
- Abstract要約: パラメトリック多目的最適化(PMO)は、無限の多目的最適化問題を解くという課題に対処する。
従来の手法では、各パラメータ設定を再実行する必要があるため、客観的評価が計算コストが高い場合には、不当なコストが発生する。
- 参考スコア(独自算出の注目度): 16.780031024741223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parametric multi-objective optimization (PMO) addresses the challenge of solving an infinite family of multi-objective optimization problems, where optimal solutions must adapt to varying parameters. Traditional methods require re-execution for each parameter configuration, leading to prohibitive costs when objective evaluations are computationally expensive. To address this issue, we propose Parametric Pareto Set Learning with multi-objective Bayesian Optimization (PPSL-MOBO), a novel framework that learns a unified mapping from both preferences and parameters to Pareto-optimal solutions. PPSL-MOBO leverages a hypernetwork with Low-Rank Adaptation (LoRA) to efficiently capture parametric variations, while integrating Gaussian process surrogates and hypervolume-based acquisition to minimize expensive function evaluations. We demonstrate PPSL-MOBO's effectiveness on two challenging applications: multi-objective optimization with shared components, where certain design variables must be identical across solution families due to modular constraints, and dynamic multi-objective optimization, where objectives evolve over time. Unlike existing methods that cannot directly solve PMO problems in a unified manner, PPSL-MOBO learns a single model that generalizes across the entire parameter space. By enabling instant inference of Pareto sets for new parameter values without retraining, PPSL-MOBO provides an efficient solution for expensive PMO problems.
- Abstract(参考訳): パラメトリック多目的最適化(PMO)は、最適解が様々なパラメータに適応しなければならない無限の多目的最適化問題を解くという課題に対処する。
従来の手法では、各パラメータ設定を再実行する必要があるため、客観的評価が計算コストが高い場合には、不当なコストが発生する。
この問題に対処するため,Parametric Pareto Set Learning with multi-objective Bayesian Optimization (PPSL-MOBO)を提案する。
PPSL-MOBOは、低ランク適応(LoRA)によるハイパーネットワークを活用し、パラメトリックな変動を効率的に捉えるとともに、ガウスプロセスサロゲートとハイパーボリュームベースの取得を統合して、高価な関数評価を最小化する。
PPSL-MOBOの有効性を2つの課題に適用した: 共有コンポーネントによる多目的最適化、モジュール制約によるソリューションファミリ間で特定の設計変数が同一でなければならない、動的多目的最適化、時間とともに目的が進化する動的多目的最適化。
PPSL-MOBOは、PMO問題を一貫した方法で直接解けない既存の方法とは異なり、パラメータ空間全体にわたって一般化する単一のモデルを学ぶ。
PPSL-MOBOは、新しいパラメータ値に対するPareto集合の即時推論を可能にすることにより、高価なPMO問題に対する効率的な解を提供する。
関連論文リスト
- Pareto Multi-Objective Alignment for Language Models [7.9051473654430655]
大規模言語モデル(LLM)は、複数の、しばしば矛盾する、目的の慎重なバランスを必要とする現実世界のアプリケーションに、ますます多くデプロイされている。
LLMにおける多目的アライメント(MOA)を明示的に設計するアルゴリズムを提案する。
PAMAは、マルチオブジェクトRLHFをクローズドフォームソリューションで凸最適化に変換し、スケーラビリティを大幅に向上させる。
論文 参考訳(メタデータ) (2025-08-11T08:54:14Z) - Preference-Optimized Pareto Set Learning for Blackbox Optimization [1.9628841617148691]
すべての目的を同時に最適化できる単一のソリューションはありません。
典型的なMOO問題では、目的間の好みを交換する最適解(パレート集合)を見つけることが目的である。
我々の定式化は、例えば微分可能なクロスエントロピー法によって解決できる二段階最適化問題につながる。
論文 参考訳(メタデータ) (2024-08-19T13:23:07Z) - Pareto Low-Rank Adapters: Efficient Multi-Task Learning with Preferences [49.14535254003683]
本稿では,機械学習におけるマルチタスクトレードオフに対処するパラメータ効率の高い新しい手法PaLoRAを紹介する。
実験の結果、PaLoRAは様々なデータセットで最先端のMTLとPFLのベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2024-07-10T21:25:51Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [51.00436121587591]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメトリした線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Controllable Expensive Multi-objective Learning with Warm-starting
Bayesian Optimization [4.833815605196964]
本稿では,Co-PSLと呼ばれる新しい制御可能な手法を用いて,既存のPSL法の不安定性と非効率性に対処することを提案する。
前者はPSLプロセスの安定化と高価な機能評価の削減を支援するためであり、後者は競合する目的間のリアルタイムトレードオフ制御を支援するためである。
合成および実世界のMOO問題における性能は、高価な多目的最適化タスクにおけるCo-PSLの有効性を示す。
論文 参考訳(メタデータ) (2023-11-26T13:45:21Z) - Beyond One-Preference-Fits-All Alignment: Multi-Objective Direct Preference Optimization [76.09576643028362]
複数のアライメント目的に対してMODPO(Multi-Objective Direct Preference Optimization)を提案する。
MODPOは、言語モデリングを直接報酬モデルに折り畳み、暗黙の集団報酬モデルとして言語モデルを訓練する。
理論的には MORLHF と同じ最適解が得られるが、実質的にはより安定で効率的である。
論文 参考訳(メタデータ) (2023-10-05T17:35:26Z) - BOtied: Multi-objective Bayesian optimization with tied multivariate ranks [33.414682601242006]
本稿では,非支配解と結合累積分布関数の極端量子化との自然な関係を示す。
このリンクにより、我々はPareto対応CDFインジケータと関連する取得関数BOtiedを提案する。
種々の合成および実世界の問題に対する実験により,BOtied は最先端MOBO 取得関数より優れていることが示された。
論文 参考訳(メタデータ) (2023-06-01T04:50:06Z) - Pareto Set Learning for Expensive Multi-Objective Optimization [5.419608513284392]
膨大な多目的最適化問題は、多くの現実世界のアプリケーションで見られる。
本稿では,MOBOのパレート集合全体を近似する学習に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-16T09:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。