論文の概要: Preference-Optimized Pareto Set Learning for Blackbox Optimization
- arxiv url: http://arxiv.org/abs/2408.09976v1
- Date: Mon, 19 Aug 2024 13:23:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 16:13:49.772826
- Title: Preference-Optimized Pareto Set Learning for Blackbox Optimization
- Title(参考訳): 優先最適化によるブラックボックス最適化のためのパレートセット学習
- Authors: Zhang Haishan, Diptesh Das, Koji Tsuda,
- Abstract要約: すべての目的を同時に最適化できる単一のソリューションはありません。
典型的なMOO問題では、目的間の好みを交換する最適解(パレート集合)を見つけることが目的である。
我々の定式化は、例えば微分可能なクロスエントロピー法によって解決できる二段階最適化問題につながる。
- 参考スコア(独自算出の注目度): 1.9628841617148691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Objective Optimization (MOO) is an important problem in real-world applications. However, for a non-trivial problem, no single solution exists that can optimize all the objectives simultaneously. In a typical MOO problem, the goal is to find a set of optimum solutions (Pareto set) that trades off the preferences among objectives. Scalarization in MOO is a well-established method for finding a finite set approximation of the whole Pareto set (PS). However, in real-world experimental design scenarios, it's beneficial to obtain the whole PS for flexible exploration of the design space. Recently Pareto set learning (PSL) has been introduced to approximate the whole PS. PSL involves creating a manifold representing the Pareto front of a multi-objective optimization problem. A naive approach includes finding discrete points on the Pareto front through randomly generated preference vectors and connecting them by regression. However, this approach is computationally expensive and leads to a poor PS approximation. We propose to optimize the preference points to be distributed evenly on the Pareto front. Our formulation leads to a bilevel optimization problem that can be solved by e.g. differentiable cross-entropy methods. We demonstrated the efficacy of our method for complex and difficult black-box MOO problems using both synthetic and real-world benchmark data.
- Abstract(参考訳): マルチオブジェクト最適化(MOO)は現実世界のアプリケーションにおいて重要な問題である。
しかし、非自明な問題に対して、全ての目的を同時に最適化できる単一の解決策は存在しない。
典型的なMOO問題では、目的間の好みを交換する最適解(パレート集合)を見つけることが目的である。
MOOのスカラー化はパレート集合全体の有限集合近似を求めるための確立された方法である。
しかし、実世界の実験的な設計シナリオでは、設計空間の柔軟な探索のためにPS全体を取得することは有益である。
近年,PS全体を近似するためにPSL(Pareto set learning)が導入されている。
PSL は多目的最適化問題のパレート正面を表す多様体を作成する。
ナイーブなアプローチは、ランダムに生成された選好ベクトルを通してパレートフロント上の離散点を見つけ、回帰によってそれらを接続することを含む。
しかし、このアプローチは計算に高価であり、PS近似に乏しい。
パレートフロント上で均等に配布される選好点を最適化することを提案する。
我々の定式化は、例えば微分可能なクロスエントロピー法によって解決できる二段階最適化問題につながる。
実世界および実世界のベンチマークデータを用いて,複雑なブラックボックスMOO問題に対する本手法の有効性を実証した。
関連論文リスト
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
厳密なランタイム制約の下で、同様の最適化問題を順次解決することは、多くのアプリケーションにとって不可欠である。
本稿では,問題インスタンスを定義するパラメータが与えられた初期解を多種多様に予測する学習を提案する。
提案手法は,すべての評価設定において有意かつ一貫した改善を実現し,必要な初期解の数に応じて効率よくスケールできることを実証した。
論文 参考訳(メタデータ) (2024-11-04T15:17:19Z) - Traversing Pareto Optimal Policies: Provably Efficient Multi-Objective Reinforcement Learning [14.260168974085376]
本稿では多目的強化学習(MORL)について検討する。
複数の報酬関数の存在下で最適なポリシーを学ぶことに焦点を当てている。
MORLの成功にもかかわらず、様々なMORL最適化目標と効率的な学習アルゴリズムについて十分な理解が得られていない。
論文 参考訳(メタデータ) (2024-07-24T17:58:49Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Pareto Manifold Learning: Tackling multiple tasks via ensembles of
single-task models [50.33956216274694]
マルチタスク学習(MTL)では、タスクは、ソリューションへの最適化を導くのではなく、互いに達成したパフォーマンスを競い、制限することができる。
重み空間におけるアンサンブル手法であるTextitPareto Manifold Learningを提案する。
論文 参考訳(メタデータ) (2022-10-18T11:20:54Z) - Pareto Set Learning for Expensive Multi-Objective Optimization [5.419608513284392]
膨大な多目的最適化問題は、多くの現実世界のアプリケーションで見られる。
本稿では,MOBOのパレート集合全体を近似する学習に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-16T09:41:54Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Pareto Navigation Gradient Descent: a First-Order Algorithm for
Optimization in Pareto Set [17.617944390196286]
マルチタスク学習のような現代の機械学習アプリケーションは、複数の目的関数をトレードオフするために最適なモデルパラメータを見つける必要がある。
勾配情報のみを用いてOPT-in-Paretoを近似的に解く1次アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-17T04:07:04Z) - A Hybrid 2-stage Neural Optimization for Pareto Front Extraction [3.918940900258555]
最適なトレードオフソリューションに対する大きな障害は、それらが必ずしも互いに収束しないことです。
正確かつ費用対効果の高い二段階アプローチを提案する。
論文 参考訳(メタデータ) (2021-01-27T20:56:19Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - Ensuring smoothly navigable approximation sets by Bezier curve
parameterizations in evolutionary bi-objective optimization -- applied to
brachytherapy treatment planning for prostate cancer [0.0]
決定空間における滑らかなベジエ曲線として近似集合をパラメータ化する場合について検討する。
高品質な近似集合をBezEAで得ることができ、時には支配とUHVに基づくアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-11T13:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。