論文の概要: Hybrid second-order gradient histogram based global low-rank sparse regression for robust face recognition
- arxiv url: http://arxiv.org/abs/2511.05893v2
- Date: Sat, 15 Nov 2025 15:41:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:21.987129
- Title: Hybrid second-order gradient histogram based global low-rank sparse regression for robust face recognition
- Title(参考訳): ハイブリッド2階勾配ヒストグラムを用いたロバスト顔認識のための大域低ランクスパース回帰
- Authors: Hongxia Li, Ying Ji, Yongxin Dong, Yuehua Feng,
- Abstract要約: 低ランク回帰モデルは、照明変動に対する堅牢性から、顔認識において広く採用されている。
既存の手法は、しばしば、不十分な特徴表現と、サンプル間で構造化された腐敗の限定的なモデリングに悩まされる。
本稿では,Hybrid 2次勾配ヒストグラムに基づくGlobal Low-Rank Sparse Regressionモデルを提案する。
- 参考スコア(独自算出の注目度): 4.582941396468189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-rank sparse regression models have been widely adopted in face recognition due to their robustness against occlusion and illumination variations. However, existing methods often suffer from insufficient feature representation and limited modeling of structured corruption across samples. To address these issues, this paper proposes a Hybrid second-order gradient Histogram based Global Low-Rank Sparse Regression (H2H-GLRSR) model. First, we propose the Histogram of Oriented Hessian (HOH) to capture second-order geometric characteristics such as curvature and ridge patterns. By fusing HOH and first-order gradient histograms, we construct a unified local descriptor, termed the Hybrid second-order gradient Histogram (H2H), which enhances structural discriminability under challenging conditions. Subsequently, the H2H features are incorporated into an extended version of the Sparse Regularized Nuclear Norm based Matrix Regression (SR\_NMR) model, where a global low-rank constraint is imposed on the residual matrix to exploit cross-sample correlations in structured noise. The resulting H2H-GLRSR model achieves superior discrimination and robustness. Experimental results on benchmark datasets demonstrate that the proposed method significantly outperforms state-of-the-art regression-based classifiers in both recognition accuracy and computational efficiency.
- Abstract(参考訳): 低ランクスパース回帰モデルは、隠蔽や照明の変動に対する堅牢性から、顔認識において広く採用されている。
しかし,既存の手法では,特徴表現の不十分さや,サンプル間の構造的腐敗の限定的なモデル化に悩まされることが多い。
これらの問題に対処するために,H2H-GLRSRモデルを用いたハイブリッド二階勾配ヒストグラムを提案する。
まず、曲率や隆起パターンなどの二階幾何学的特徴を捉えるために、向き付けヘッセン(HOH)のヒストグラムを提案する。
HOHと1次勾配ヒストグラムを融合させることで、H2Hと呼ばれる統一された局所記述子を構築する。
その後、H2H特性をSparse Regularized Nuclear Norm based Matrix Regression (SR\_NMR)モデルの拡張バージョンに組み込む。
結果として得られるH2H-GLRSRモデルは、優れた差別性とロバスト性を達成する。
評価実験の結果,提案手法は認識精度と計算効率の両方において,最先端の回帰に基づく分類器を著しく上回っていることがわかった。
関連論文リスト
- HyperTTA: Test-Time Adaptation for Hyperspectral Image Classification under Distribution Shifts [28.21559601586271]
HyperTTA (Test-Time Adaptable Transformer for Hyperspectral Degradation) は、様々な劣化条件下でモデルロバスト性を高める統一フレームワークである。
テスト時の適応戦略である、信頼を意識したエントロピー最小化LayerNorm Adapter (CELA)は、LayerNorm層のアフィンパラメータのみを動的に更新する。
2つのベンチマークデータセットの実験では、HyperTTAがさまざまな劣化シナリオで最先端のベースラインを上回っていることが示されている。
論文 参考訳(メタデータ) (2025-09-10T09:31:37Z) - Generate Aligned Anomaly: Region-Guided Few-Shot Anomaly Image-Mask Pair Synthesis for Industrial Inspection [53.137651284042434]
異常検査は製造業において重要な役割を担っているが、異常サンプルの不足は既存の方法の有効性を制限している。
本稿では,GAA (Generate grained Anomaly) を提案する。
GAAは少数のサンプルのみを用いて現実的で多様で意味的に整合した異常を発生させる。
論文 参考訳(メタデータ) (2025-07-13T12:56:59Z) - Learning Robust Heterogeneous Graph Representations via Contrastive-Reconstruction under Sparse Semantics [13.555683316315683]
マスケードオートエンコーダ(MAE)とコントラスト学習(CL)はグラフ自己教師学習において2つの重要なパラダイムである。
本稿ではヘテロジニアスグラフのための新しい二チャンネル自己教師型学習フレームワークHetCRFを紹介する。
HetCRFは2段階のアグリゲーション戦略を用いて埋め込みセマンティクスを適応し、MAEとCLの両方と互換性がある。
論文 参考訳(メタデータ) (2025-06-07T06:35:42Z) - Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation [71.69331824668954]
スペクトル変動は、ハイパースペクトル画像(HSI)解析において共通の課題となる
低ランクテンソル表現は、HSIデータに固有の相関を利用して、堅牢な戦略として登場した。
本研究では,不規則な3次元立方体を効率的にモデル化するために,不規則なテンソルローランク表現のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-10-24T02:56:22Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
本研究では,HSI復調のためのロバストな主成分分析のための新しい非特異なアプローチを提案する。
我々は、ランクとスパースコンポーネントの両方に対する正確な近似を開発する。
シミュレーションと実HSIの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-01-08T11:48:46Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
ハイパースペクトル画像復元のための空間特性とスペクトル特性を組み合わせた統一パラダイムを提案する。
提案するパラダイムは,非局所空間デノゲーションと光計算の複雑さから,性能上の優位性を享受する。
HSI復調、圧縮再構成、塗装タスクの実験は、シミュレーションと実際のデータセットの両方で、その優位性を示している。
論文 参考訳(メタデータ) (2020-10-24T15:53:56Z) - Multivariate Functional Regression via Nested Reduced-Rank
Regularization [2.730097437607271]
多変量関数応答と予測器を備えた回帰モデルに適用するネスト型低ランク回帰(NRRR)手法を提案する。
非漸近解析により、NRRRは少なくとも低ランク回帰と同等の誤差率を達成できることを示す。
NRRRを電力需要問題に適用し、日中電力消費の軌跡と日中電力消費の軌跡を関連づける。
論文 参考訳(メタデータ) (2020-03-10T14:58:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。