論文の概要: Reperio-rPPG: Relational Temporal Graph Neural Networks for Periodicity Learning in Remote Physiological Measurement
- arxiv url: http://arxiv.org/abs/2511.05946v1
- Date: Sat, 08 Nov 2025 09:41:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.672342
- Title: Reperio-rPPG: Relational Temporal Graph Neural Networks for Periodicity Learning in Remote Physiological Measurement
- Title(参考訳): Reperio-rPPG:Relational Temporal Graph Neural Networks for Periodicity Learning in Remote Physiological Measurement (特集:一般セッション)
- Authors: Ba-Thinh Nguyen, Thach-Ha Ngoc Pham, Hoang-Long Duc Nguyen, Thi-Duyen Ngo, Thanh-Ha Le,
- Abstract要約: リモート光麻痺(英: Remote Photoplethys)は、顔画像の微妙な色の変化を利用して、心拍数や呼吸速度などの重要な兆候を推定する、新たな生理的センシング技術である。
この非侵襲的手法は様々な領域で普及しているが、現実世界の条件下での微細な時間的ダイナミクスを捉える能力は過小評価されている。
周期構造を効果的に捉えるためにトランスフォーマーを戦略的に統合する新しいフレームワークであるGraph Reperio-rを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote photoplethysmography (rPPG) is an emerging contactless physiological sensing technique that leverages subtle color variations in facial videos to estimate vital signs such as heart rate and respiratory rate. This non-invasive method has gained traction across diverse domains, including telemedicine, affective computing, driver fatigue detection, and health monitoring, owing to its scalability and convenience. Despite significant progress in remote physiological signal measurement, a crucial characteristic - the intrinsic periodicity - has often been underexplored or insufficiently modeled in previous approaches, limiting their ability to capture fine-grained temporal dynamics under real-world conditions. To bridge this gap, we propose Reperio-rPPG, a novel framework that strategically integrates Relational Convolutional Networks with a Graph Transformer to effectively capture the periodic structure inherent in physiological signals. Additionally, recognizing the limited diversity of existing rPPG datasets, we further introduce a tailored CutMix augmentation to enhance the model's generalizability. Extensive experiments conducted on three widely used benchmark datasets - PURE, UBFC-rPPG, and MMPD - demonstrate that Reperio-rPPG not only achieves state-of-the-art performance but also exhibits remarkable robustness under various motion (e.g., stationary, rotation, talking, walking) and illumination conditions (e.g., nature, low LED, high LED). The code is publicly available at https://github.com/deconasser/Reperio-rPPG.
- Abstract(参考訳): リモート光胸腺撮影(remote Photoplethysmography, RPPG)は、顔画像の微妙な色変化を利用して、心拍数や呼吸速度などの重要な兆候を推定する、接触のない生理学的センシング技術である。
この非侵襲的手法は、テレメディシン、感情コンピューティング、ドライバーの疲労検出、健康モニタリングなど、そのスケーラビリティと利便性のために、様々な領域で注目を集めている。
リモート生理的信号測定の大幅な進歩にもかかわらず、本質的な周期性(英語版)という重要な特徴は、しばしば以前のアプローチで過度に探索され、あるいは不十分にモデル化され、現実世界の条件下で微細な時間的ダイナミクスを捉える能力が制限された。
このギャップを埋めるために,リレーショナル・コンボリューショナル・ネットワークをグラフ変換器と戦略的に統合し,生理的信号に固有の周期構造を効果的に捉える新しいフレームワークであるReperio-rPPGを提案する。
さらに、既存のrPPGデータセットの限られた多様性を認識し、モデルの一般化性を高めるために、カスタマイズされたCutMix拡張を導入する。
PURE(英語版)、UBFC-rPPG(英語版)、MMPD(英語版)の3つの広く使われているベンチマークデータセットで実施された大規模な実験は、Reperio-rPPGが最先端のパフォーマンスを達成するだけでなく、様々な動作(例えば、静止、回転、話し、歩き)と照明条件(例えば、自然、低LED、高LED)の下で顕著な堅牢性を示すことを示した。
コードはhttps://github.com/deconasser/Reperio-rPPGで公開されている。
関連論文リスト
- PHASE-Net: Physics-Grounded Harmonic Attention System for Efficient Remote Photoplethysmography Measurement [63.007237197267834]
既存のディープラーニング手法は、主に生理学的モニタリングであり、理論的な堅牢性を欠いている。
本研究では,Navier-Stokes方程式のヘモダイナミックスから導かれる物理インフォームド r パラダイムを提案し,パルス信号が2次系に従うことを示す。
これは、時間的円錐ネットワーク(TCN)を使用する理論的正当性を提供する。
Phase-Netは高い効率で最先端のパフォーマンスを実現し、理論上は基礎的でデプロイ可能な r ソリューションを提供する。
論文 参考訳(メタデータ) (2025-09-29T14:36:45Z) - Efficient and Robust Multidimensional Attention in Remote Physiological Sensing through Target Signal Constrained Factorization [7.947387272047604]
マルチモーダルビデオ入力からの光胸腺造影(rRSP)信号と呼吸(rRSP)信号の同時推定を目的とした,効率的なデュアルブランチ3D-CNNアーキテクチャであるMMRPhysを提案する。
TSFMを用いたMMRPhysは、リアルタイムアプリケーションに適した最小の推論レイテンシを維持しつつ、RRSP推定のための領域シフトの一般化において最先端の手法を著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-05-11T15:20:45Z) - PhysLLM: Harnessing Large Language Models for Cross-Modal Remote Physiological Sensing [49.243031514520794]
LLM(Large Language Models)は、テキスト中心の設計のため、長距離信号の取得に優れる。
PhysLLMは最先端の精度とロバスト性を実現し、照明のバリエーションや動きのシナリオにまたがる優れた一般化を示す。
論文 参考訳(メタデータ) (2025-05-06T15:18:38Z) - RhythmFormer: Extracting Patterned rPPG Signals based on Periodic Sparse Attention [18.412642801957197]
RRhythmは、生理学的ビデオに基づいて生理的信号を検出する非接触法である。
本稿では,周期性によって誘発される時間的注意間隔に基づく周期的注意機構を提案する。
これは、データ内およびデータ間評価の両方において最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-20T07:56:02Z) - Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation
of rPPG [2.82697733014759]
r(pg photoplethysmography)は、カメラで捉えたヘモグロビンの光吸収特性を用いてBVP(Blood Volume Pulse)を測定し、分析する技術である。
本研究は,多種多様なデータセットを対象とした様々なrベンチマーク手法の評価を行い,妥当性評価と比較を行うためのフレームワークを提供することを目的とする。
論文 参考訳(メタデータ) (2023-07-24T09:35:47Z) - PhysFormer++: Facial Video-based Physiological Measurement with SlowFast
Temporal Difference Transformer [76.40106756572644]
最近のディープラーニングアプローチは、時間的受容の限られた畳み込みニューラルネットワークを用いた微妙な手がかりのマイニングに重点を置いている。
本稿では,PhysFormerとPhys++++をベースとした2つのエンドツーエンドビデオ変換器を提案する。
4つのベンチマークデータセットで総合的な実験を行い、時間内テストとクロスデータセットテストの両方において優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-07T15:56:03Z) - PhysFormer: Facial Video-based Physiological Measurement with Temporal
Difference Transformer [55.936527926778695]
近年のディープラーニングアプローチは、時間的受容の限られた畳み込みニューラルネットワークを用いた微妙なrの手がかりのマイニングに重点を置いている。
本稿では,エンドツーエンドのビデオトランスをベースとしたアーキテクチャであるPhysFormerを提案する。
論文 参考訳(メタデータ) (2021-11-23T18:57:11Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。