論文の概要: Interpretable Recognition of Cognitive Distortions in Natural Language Texts
- arxiv url: http://arxiv.org/abs/2511.05969v1
- Date: Sat, 08 Nov 2025 11:13:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.68714
- Title: Interpretable Recognition of Cognitive Distortions in Natural Language Texts
- Title(参考訳): 自然言語テキストにおける認知歪みの解釈的認識
- Authors: Anton Kolonin, Anna Arinicheva,
- Abstract要約: N-gramのような重み付けされた構造パターンに基づく自然言語テキストの多要素分類手法を提案する。
提案する認識学習アルゴリズムは,この分野における技術の現状を改善する。
この改善は2つの公開データセットでテストされており、タスクの文学的に知られたF1スコアよりも大幅に改善されている。
- 参考スコア(独自算出の注目度): 0.12891210250935145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new approach to multi-factor classification of natural language texts based on weighted structured patterns such as N-grams, taking into account the heterarchical relationships between them, applied to solve such a socially impactful problem as the automation of detection of specific cognitive distortions in psychological care, relying on an interpretable, robust and transparent artificial intelligence model. The proposed recognition and learning algorithms improve the current state of the art in this field. The improvement is tested on two publicly available datasets, with significant improvements over literature-known F1 scores for the task, with optimal hyper-parameters determined, having code and models available for future use by the community.
- Abstract(参考訳): 本研究では,N-gramのような重み付けされた構造パターンに基づく自然言語テキストの多要素分類手法を提案する。
提案する認識学習アルゴリズムは,この分野での最先端技術を改善する。
この改善は2つの公開データセットでテストされ、タスクの文献的に知られたF1スコアよりも大幅に改善され、最適なハイパーパラメータが決定され、コミュニティが将来の使用のためにコードとモデルが利用可能になる。
関連論文リスト
- Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
認知表現動的プログラミングに基づく知識追跡(CRDP-KT)モデルを提案する。
質問の難易度とそれらの間の性能間隔に基づいて認知表現を最適化する動的プログラミングアルゴリズムである。
これは、その後のモデルトレーニングのためにより正確で体系的な入力機能を提供し、それによって認知状態のシミュレーションにおける歪みを最小限にする。
論文 参考訳(メタデータ) (2025-06-03T14:44:48Z) - Semantic Mastery: Enhancing LLMs with Advanced Natural Language Understanding [0.0]
本稿では,より高度なNLU技術を用いて,大規模言語モデル(LLM)を進化させる最先端の方法論について論じる。
我々は、構造化知識グラフ、検索強化生成(RAG)、および人間レベルの理解とモデルにマッチする微調整戦略の利用を分析する。
論文 参考訳(メタデータ) (2025-04-01T04:12:04Z) - Building A Unified AI-centric Language System: analysis, framework and future work [0.0]
本稿では,AI中心の統一言語システムの設計について考察する。
多様な自然言語入力を合理化されたAIフレンドリーな言語に翻訳するフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-06T20:32:57Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
自然言語処理モデルに認知言語処理信号を統合するためのCogAlignアプローチを提案する。
我々は、CogAlignが、パブリックデータセット上の最先端モデルよりも、複数の認知機能で大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2021-06-10T07:10:25Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z) - Uncertainty Quantification for Deep Context-Aware Mobile Activity
Recognition and Unknown Context Discovery [85.36948722680822]
我々はα-βネットワークと呼ばれる深層モデルのコンテキスト認識混合を開発する。
高レベルの文脈を識別することで、精度とFスコアを10%向上させる。
トレーニングの安定性を確保するために、公開データセットと社内データセットの両方でクラスタリングベースの事前トレーニングを使用しました。
論文 参考訳(メタデータ) (2020-03-03T19:35:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。