論文の概要: Mixtures of SubExperts for Large Language Continual Learning
- arxiv url: http://arxiv.org/abs/2511.06237v1
- Date: Sun, 09 Nov 2025 05:44:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.830722
- Title: Mixtures of SubExperts for Large Language Continual Learning
- Title(参考訳): 大規模言語連続学習のためのサブエキスパートの混合
- Authors: Haeyong Kang,
- Abstract要約: タスクの連続ストリームに大規模言語モデルを適用することは、決定的だが挑戦的な取り組みである。
1組のPEFTパラメータを新しいタスクに再利用すると、しばしば以前の知識を壊滅的に忘れてしまう。
本稿では,最小限の忘れ込みと効率のよい拡張性を実現するための,新しい連続学習フレームワークであるTextitMixtures of SubExperts (MoSEs)を提案する。
- 参考スコア(独自算出の注目度): 6.425296129700846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapting Large Language Models (LLMs) to a continuous stream of tasks is a critical yet challenging endeavor. While Parameter-Efficient Fine-Tuning (PEFT) methods have become a standard for this, they face a fundamental dilemma in continual learning. Reusing a single set of PEFT parameters for new tasks often leads to catastrophic forgetting of prior knowledge. Conversely, allocating distinct parameters for each task prevents forgetting but results in a linear growth of the model's size and fails to facilitate knowledge transfer between related tasks. To overcome these limitations, we propose a novel adaptive PEFT method referred to as \textit{Mixtures of SubExperts (MoSEs)}, a novel continual learning framework designed for minimal forgetting and efficient scalability. MoSEs integrate a sparse Mixture of SubExperts into the transformer layers, governed by a task-specific routing mechanism. This architecture allows the model to isolate and protect knowledge within dedicated SubExperts, thereby minimizing parameter interference and catastrophic forgetting. Crucially, the router can adaptively select and combine previously learned sparse parameters for new tasks, enabling effective knowledge transfer while ensuring that the model's capacity grows sublinearly. We evaluate MoSEs on the comprehensive TRACE benchmark datasets. Our experiments demonstrate that MoSEs significantly outperform conventional continual learning approaches in both knowledge retention and scalability to new tasks, achieving state-of-the-art performance with substantial memory and computational savings.
- Abstract(参考訳): タスクの連続ストリームにLLM(Large Language Models)を適用することは、重要で難しい取り組みである。
パラメータ効率のよいファインチューニング(PEFT)手法が標準となっているが、継続学習における基本的なジレンマに直面している。
1組のPEFTパラメータを新しいタスクに再利用すると、しばしば以前の知識を壊滅的に忘れてしまう。
逆に、各タスクに対して異なるパラメータを割り当てることは、忘れることを防ぐが、モデルのサイズが線形に成長し、関連するタスク間の知識伝達を促進することができない。
これらの制約を克服するため,我々は,最小限の忘れ書きと効率的なスケーラビリティを念頭に設計した新しい連続学習フレームワークである,‘textit{Mixtures of SubExperts(MoSEs)’ と呼ばれる新しい適応PEFT手法を提案する。
MoSEはタスク固有のルーティングメカニズムによって管理されるトランスフォーマー層にSubExpertのスパースミックスを統合する。
このアーキテクチャにより、モデルは専用のSubExpert内の知識を分離し、保護し、パラメータ干渉と破滅的な忘れを最小化する。
重要なことに、ルータは、学習済みのスパースパラメータを適応的に選択し、新しいタスクに組み合わせて、モデルのキャパシティがサブリニア的に増加することを保証しながら、効果的な知識伝達を可能にする。
包括的TRACEベンチマークデータセット上でMoSEを評価する。
実験の結果,MoSEは知識保持と拡張性の両方において従来の継続学習手法よりも優れており,メモリと計算の大幅な節約による最先端性能を実現していることがわかった。
関連論文リスト
- EKPC: Elastic Knowledge Preservation and Compensation for Class-Incremental Learning [53.88000987041739]
クラスインクリメンタルラーニング(Class-Incremental Learning, CIL)は、AIモデルを、時間とともに異なるクラスのシーケンシャルに到着したデータから継続的に学習可能にすることを目的としている。
本稿では, 重要度を考慮した重要度正規化 (IPR) と CIL のためのトレーニング可能なセマンティックドリフト補償 (TSDC) を統合したElastic Knowledge Preservation and Compensation (EKPC) 法を提案する。
論文 参考訳(メタデータ) (2025-06-14T05:19:58Z) - Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning [19.27175827358111]
大規模言語モデル(LLM)における継続的な学習は破滅的な忘れがちである。
適応特異値分解(SVD)を利用した連続的完全微調整手法を提案する。
我々は,Encoder-decoder (T5-Large) モデルとdecoder-only (LLaMA-2 7B) モデルの両方を用いて,標準連続学習ベンチマークを広範囲に評価した。
論文 参考訳(メタデータ) (2025-04-09T17:59:42Z) - LLaVA-CMoE: Towards Continual Mixture of Experts for Large Vision-Language Models [21.888139819188105]
LLaVA-CMoEは、大規模言語モデルの継続的な学習フレームワークである。
Probe-Guided Knowledge Extensionメカニズムは、いつ、どこで新しいエキスパートを追加するべきかを決定する。
Probabilistic Task Locatorは各タスクを専用軽量ルータに割り当てる。
論文 参考訳(メタデータ) (2025-03-27T07:36:11Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - A Dirichlet Process Mixture of Robust Task Models for Scalable Lifelong
Reinforcement Learning [11.076005074172516]
強化学習アルゴリズムは、生涯ストリーミング情報に直面すると、破滅的な忘れ物や干渉に容易に遭遇する。
本稿では,ネットワーク容量を動的に拡張し,新たな知識に適合する拡張寿命RL法を提案する。
提案手法は,拡張寿命の長いRLの実現に成功し,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-22T09:48:41Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
継続的学習のための簡易タスク特化機能マップ変換戦略を提案する。
これらは新しいタスクを学習するための強力な柔軟性を提供し、ベースアーキテクチャに最小パラメータを追加することで実現される。
本手法の有効性と効率を,判別(cifar-100およびimagenet-1k)および生成的タスクの一連の実験を用いて実証する。
論文 参考訳(メタデータ) (2021-03-25T01:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。