論文の概要: A Risk-Neutral Neural Operator for Arbitrage-Free SPX-VIX Term Structures
- arxiv url: http://arxiv.org/abs/2511.06451v1
- Date: Sun, 09 Nov 2025 16:35:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.955484
- Title: A Risk-Neutral Neural Operator for Arbitrage-Free SPX-VIX Term Structures
- Title(参考訳): 任意なSPX-VIX項構造に対するリスクニュートラルニューラルネットワーク
- Authors: Jian'an Zhang,
- Abstract要約: ARBITERは市場の状態を、インプリートボラティリティと分散曲線を出力する演算子にマッピングする。
このモデルは、制約付きデコーダで演算子学習を結合し、段階的なスタイルの更新とプロジェクションでトレーニングされる。
- 参考スコア(独自算出の注目度): 4.235667373386689
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose ARBITER, a risk-neutral neural operator for learning joint SPX-VIX term structures under no-arbitrage constraints. ARBITER maps market states to an operator that outputs implied volatility and variance curves while enforcing static arbitrage (calendar, vertical, butterfly), Lipschitz bounds, and monotonicity. The model couples operator learning with constrained decoders and is trained with extragradient-style updates plus projection. We introduce evaluation metrics for derivatives term structures (NAS, CNAS, NI, Dual-Gap, Stability Rate) and show gains over Fourier Neural Operator, DeepONet, and state-space sequence models on historical SPX and VIX data. Ablation studies indicate that tying the SPX and VIX legs reduces Dual-Gap and improves NI, Lipschitz projection stabilizes calibration, and selective state updates improve long-horizon generalization. We provide identifiability and approximation results and describe practical recipes for arbitrage-free interpolation and extrapolation across maturities and strikes.
- Abstract(参考訳): 本研究では,危険ニュートラルなニュートラル演算子ARBITERを提案する。
ARBITERは市場の状態を、静的仲裁(カレンダー、垂直、蝶)、リプシッツ境界、モノトニック性(英語版)を強制しながら、インプリートボラティリティと分散曲線を出力する演算子にマッピングする。
このモデルは、制約付きデコーダで演算子学習を結合し、段階的なスタイルの更新とプロジェクションでトレーニングされる。
本研究では、微分項構造(NAS, CNAS, NI, Dual-Gap, stability rate)の評価指標を導入し、歴史的SPXおよびVIXデータに基づくフーリエニューラル演算子、DeepONetおよび状態空間列モデルに対する利得を示す。
アブレーション研究では、SPXとVIXの脚を結ぶことでデュアルギャップが減少し、NIが向上し、リプシッツの投射は校正が安定し、選択状態の更新は長期の一般化を改善することが示されている。
そこで本研究では,成熟度とストライクの偏りのない補間と外挿のための実践的なレシピについて述べる。
関連論文リスト
- FLEX: A Backbone for Diffusion-Based Modeling of Spatio-temporal Physical Systems [51.15230303652732]
FLEX (F Low Expert) は、時間物理系の生成モデリングのためのバックボーンアーキテクチャである。
拡散モデルにおける速度場の分散を低減し、トレーニングの安定化に役立つ。
少数の特徴を2つの逆拡散ステップとして用いて、超解像および予測タスクの正確な予測を行う。
論文 参考訳(メタデータ) (2025-05-23T00:07:59Z) - A Novel Decision Ensemble Framework: Customized Attention-BiLSTM and
XGBoost for Speculative Stock Price Forecasting [2.011511123338945]
本稿では、投機的株式Bitcoin-USD(BTC-USD)の日替価格を予測するための新しいフレームワーク、CAB-XDEを提案する。
CAB-XDEフレームワークは、カスタマイズされた双方向長短期メモリ(BiLSTM)とアテンション機構とXGBoostアルゴリズムを統合している。
提案されたCAB-XDEフレームワークは、Yahoo Financeから供給された不安定なBitcoin市場で実証的に検証されている。
論文 参考訳(メタデータ) (2024-01-05T17:13:30Z) - How to train your VAE [0.0]
変分オートエンコーダ(VAE)は、機械学習における生成モデリングと表現学習の基盤となっている。
本稿では,ELBO(エビデンス・ロウアー・バウンド)における重要な構成要素であるKLディバージェンス(Kulback-Leibler)の解釈について検討する。
提案手法は, ELBOを後続確率のガウス混合体で再定義し, 正規化項を導入し, テクスチャリアリズムを高めるためにPatchGAN識別器を用いる。
論文 参考訳(メタデータ) (2023-09-22T19:52:28Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Batches Stabilize the Minimum Norm Risk in High Dimensional Overparameterized Linear Regression [12.443289202402761]
最小ノルム過パラメータ線形回帰モデルのレンズによるバッチ分割の利点を示す。
最適なバッチサイズを特徴付け、ノイズレベルに逆比例することを示す。
また,Weiner係数と同等の係数によるバッチ最小ノルム推定器の縮小がさらに安定化し,全ての設定において2次リスクを低くすることを示した。
論文 参考訳(メタデータ) (2023-06-14T11:02:08Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
最近の研究は、自己教師付き学習とグラフラプラシアン作用素のトップ固有空間の近似との関係を構築している。
この研究は、増強に基づく事前訓練の統計的分析に発展する。
論文 参考訳(メタデータ) (2023-06-01T15:18:55Z) - Learning Dynamical Systems via Koopman Operator Regression in
Reproducing Kernel Hilbert Spaces [52.35063796758121]
動的システムの有限データ軌跡からクープマン作用素を学ぶためのフレームワークを定式化する。
リスクとクープマン作用素のスペクトル分解の推定を関連付ける。
以上の結果から,RRRは他の広く用いられている推定値よりも有益である可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-27T14:57:48Z) - Lipschitz Bounded Equilibrium Networks [3.2872586139884623]
本稿では、平衡ニューラルネットワーク、すなわち暗黙の方程式で定義されるネットワークの新しいパラメータ化を提案する。
新しいパラメータ化は、制約のない最適化を通じてトレーニング中にリプシッツ境界を許容する。
画像分類実験では、リプシッツ境界は非常に正確であり、敵攻撃に対する堅牢性を向上させることが示されている。
論文 参考訳(メタデータ) (2020-10-05T01:00:40Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
我々のリプシッツ再帰ユニットは、他の連続時間RNNと比較して、入力やパラメータの摂動に対してより堅牢であることを示す。
実験により,Lipschitz RNNは,ベンチマークタスクにおいて,既存のリカレントユニットよりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-22T08:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。