論文の概要: On the Analogy between Human Brain and LLMs: Spotting Key Neurons in Grammar Perception
- arxiv url: http://arxiv.org/abs/2511.06519v1
- Date: Sun, 09 Nov 2025 20:08:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.987698
- Title: On the Analogy between Human Brain and LLMs: Spotting Key Neurons in Grammar Perception
- Title(参考訳): ヒト脳とLDMのアナロジー--文法知覚におけるキーニューロンの発見
- Authors: Sanaz Saki Norouzi, Mohammad Masjedi, Pascal Hitzler,
- Abstract要約: 音声タグの異なる単語の予測に係わる重要なニューロンを同定する。
得られた知識を用いて、データセット上の分類器を訓練し、これらの重要なニューロンの活性化パターンが、新鮮なデータに基づいて音声タグを確実に予測できることを示す。
- 参考スコア(独自算出の注目度): 0.14337588659482517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Neural Networks, the building blocks of AI, were inspired by the human brain's network of neurons. Over the years, these networks have evolved to replicate the complex capabilities of the brain, allowing them to handle tasks such as image and language processing. In the realm of Large Language Models, there has been a keen interest in making the language learning process more akin to that of humans. While neuroscientific research has shown that different grammatical categories are processed by different neurons in the brain, we show that LLMs operate in a similar way. Utilizing Llama 3, we identify the most important neurons associated with the prediction of words belonging to different part-of-speech tags. Using the achieved knowledge, we train a classifier on a dataset, which shows that the activation patterns of these key neurons can reliably predict part-of-speech tags on fresh data. The results suggest the presence of a subspace in LLMs focused on capturing part-of-speech tag concepts, resembling patterns observed in lesion studies of the brain in neuroscience.
- Abstract(参考訳): AIの構成要素である人工ニューラルネットワークは、人間の脳のニューロンネットワークにインスパイアされた。
長年にわたり、これらのネットワークは脳の複雑な能力を再現し、画像や言語処理などのタスクを処理できるように進化してきた。
大規模言語モデル(Large Language Models)の領域では、言語学習プロセスを人間のものとより類似させることに強い関心が寄せられている。
神経科学的研究は、異なる文法カテゴリーが脳内の異なるニューロンによって処理されることを示したが、LLMも同様に機能していることを示した。
Llama 3を用いて、異なる音声タグに属する単語の予測に関連する最も重要なニューロンを同定する。
得られた知識を用いて、データセット上の分類器を訓練し、これらの重要なニューロンの活性化パターンが、新鮮なデータに基づいて音声タグを確実に予測できることを示す。
以上の結果から,LLMにおけるサブスペースの存在は,神経科学における脳の病変研究で観察されるパターンに類似した,音声タグの概念を捉えることに焦点が当てられていることが示唆された。
関連論文リスト
- How does Alignment Enhance LLMs' Multilingual Capabilities? A Language Neurons Perspective [64.79894853375478]
本稿では,言語ニューロン(言語特異的ニューロンや言語関連ニューロンを含む)と言語非依存ニューロンを検出する,より微細なニューロン識別アルゴリズムを提案する。
異なる種類のニューロンの分布特性に基づいて、多言語推論のためのLCMの内部過程を4つの部分に分割する。
我々は、異なる種類のニューロンに焦点を合わせ、その前後のモデルを体系的に分析する。
論文 参考訳(メタデータ) (2025-05-27T17:59:52Z) - Towards Unified Neural Decoding of Perceived, Spoken and Imagined Speech from EEG Signals [1.33134751838052]
本研究では,非侵襲的ニューラルネットワーク復号法におけるディープラーニングモデルの有効性について検討した。
それは、知覚、過度、ささやき、想像されたスピーチなど、異なる音声パラダイムの区別に焦点を当てた。
論文 参考訳(メタデータ) (2024-11-14T07:20:08Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Sharing Matters: Analysing Neurons Across Languages and Tasks in LLMs [85.0284555835015]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野に革命をもたらした。
多言語環境でのLLMの内部動作を探究する研究はほとんどない。
我々は、異なる言語にまたがる特定の入力に対する応答に基づいて、ニューロンを4つの異なるカテゴリに分類する。
論文 参考訳(メタデータ) (2024-06-13T16:04:11Z) - Language Reconstruction with Brain Predictive Coding from fMRI Data [28.217967547268216]
予測符号化の理論は、人間の脳が将来的な単語表現を継続的に予測していることを示唆している。
textscPredFTは、BLEU-1スコアが最大27.8%$の最先端のデコード性能を実現する。
論文 参考訳(メタデータ) (2024-05-19T16:06:02Z) - Investigating the Encoding of Words in BERT's Neurons using Feature
Textualization [11.943486282441143]
本稿では,埋め込み語空間におけるニューロンの表現を生成する手法を提案する。
生成した表現は、個々のニューロンにおける符号化された知識についての洞察を与えることができる。
論文 参考訳(メタデータ) (2023-11-14T15:21:49Z) - BrainBERT: Self-supervised representation learning for intracranial
recordings [18.52962864519609]
我々は、神経科学に現代的な表現学習アプローチをもたらす頭蓋内記録のための再利用可能な変換器BrainBERTを開発した。
NLPや音声認識と同様に、この変換器は複雑な概念を高い精度で、はるかに少ないデータで分類することができる。
将来的には、表現学習を使用することで、はるかに多くの概念がニューラル録音から切り離され、言語モデルがアンロックされた言語のように脳をアンロックする可能性がある。
論文 参考訳(メタデータ) (2023-02-28T07:40:37Z) - Deep Learning Models to Study Sentence Comprehension in the Human Brain [0.1503974529275767]
自然言語を処理する最近の人工ニューラルネットワークは、文レベルの理解を必要とするタスクにおいて、前例のないパフォーマンスを達成する。
我々は、これらの人工言語モデルと人間の脳活動を比較する研究をレビューし、このアプローチが自然言語理解に関わる神経プロセスの理解をいかに改善したかを評価する。
論文 参考訳(メタデータ) (2023-01-16T10:31:25Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
生波形で訓練された自己教師型アルゴリズムは有望な候補である。
We show that Wav2Vec 2.0 learns brain-like representations with little as 600 hours of unlabelled speech。
論文 参考訳(メタデータ) (2022-06-03T17:01:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。