論文の概要: PointCubeNet: 3D Part-level Reasoning with 3x3x3 Point Cloud Blocks
- arxiv url: http://arxiv.org/abs/2511.06744v1
- Date: Mon, 10 Nov 2025 06:16:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:45.1013
- Title: PointCubeNet: 3D Part-level Reasoning with 3x3x3 Point Cloud Blocks
- Title(参考訳): PointCubeNet: 3x3x3ポイントクラウドブロックによる3D部分レベルの推論
- Authors: Da-Yeong Kim, Yeong-Jun Cho,
- Abstract要約: PointCubeNetは、新しいマルチモーダル3D理解フレームワークである。
部分アノテーションを必要とせずに部分レベルの推論を実現する。
これは、教師なしの3D部分レベルの推論を行う最初の試みである。
- 参考スコア(独自算出の注目度): 1.7188280334580195
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we propose PointCubeNet, a novel multi-modal 3D understanding framework that achieves part-level reasoning without requiring any part annotations. PointCubeNet comprises global and local branches. The proposed local branch, structured into 3x3x3 local blocks, enables part-level analysis of point cloud sub-regions with the corresponding local text labels. Leveraging the proposed pseudo-labeling method and local loss function, PointCubeNet is effectively trained in an unsupervised manner. The experimental results demonstrate that understanding 3D object parts enhances the understanding of the overall 3D object. In addition, this is the first attempt to perform unsupervised 3D part-level reasoning and achieves reliable and meaningful results.
- Abstract(参考訳): 本稿では,部分アノテーションを必要とせずに部分レベルの推論を実現する,新しいマルチモーダル3D理解フレームワークであるPointCubeNetを提案する。
PointCubeNetはグローバルブランチとローカルブランチで構成されている。
提案するローカルブランチは,3x3x3のローカルブロックで構成され,対応するローカルテキストラベルを用いたポイントクラウドサブリージョンの部分レベル解析を可能にする。
提案手法と局所損失関数を利用して、PointCubeNetは教師なしの方法で効果的に訓練される。
実験結果から,3次元オブジェクト部分の理解が全体の3次元オブジェクトの理解を促進することが示された。
さらに、これは教師なしの3次元部分レベルの推論を行い、信頼性と有意義な結果を得るための最初の試みである。
関連論文リスト
- OpenGaussian: Towards Point-Level 3D Gaussian-based Open Vocabulary Understanding [54.981605111365056]
本稿では,3次元点レベルの開語彙理解が可能な3次元ガウススティング(3DGS)に基づくOpenGaussianを紹介する。
我々の主な動機は、既存の3DGSベースのオープン語彙法が主に2Dピクセルレベルの解析に焦点を当てていることに起因している。
論文 参考訳(メタデータ) (2024-06-04T07:42:33Z) - Object Detection in 3D Point Clouds via Local Correlation-Aware Point
Embedding [0.0]
Frustum PointNet(F-PointNet)に基づく点クラウドデータにおける3次元物体検出のための改良されたアプローチを提案する。
提案手法は,従来のF-PointNetと比較し,計算点の特徴のある点近傍について検討する。
論文 参考訳(メタデータ) (2023-01-11T18:14:47Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level
Supervision [65.19589997822155]
我々は3Dポイントクラウドのポイントレベルのセマンティクスをバウンディングボックスレベルの監視で学習するために,Box2Segと呼ばれるニューラルアーキテクチャを導入する。
提案するネットワークは,安価な,あるいは既定のバウンディングボックスレベルのアノテーションやサブクラウドレベルのタグでトレーニング可能であることを示す。
論文 参考訳(メタデータ) (2022-01-09T09:07:48Z) - Group-Free 3D Object Detection via Transformers [26.040378025818416]
3Dポイントクラウドから3Dオブジェクトを直接検出するためのシンプルで効果的な方法を紹介します。
本手法は, 点群内のすべての点から物体の特徴を, 変圧器 citevaswaniattention における注意機構の助けを借りて計算する。
ベルやホイッスルが少ないため,ScanNet V2とSUN RGB-Dの2つのベンチマークで最先端の3Dオブジェクト検出性能を実現する。
論文 参考訳(メタデータ) (2021-04-01T17:59:36Z) - PIG-Net: Inception based Deep Learning Architecture for 3D Point Cloud
Segmentation [0.9137554315375922]
そこで我々はPIG-Netと呼ばれるインセプションに基づくディープネットワークアーキテクチャを提案し,点雲の局所的および大域的幾何学的詳細を効果的に特徴付ける。
我々は2つの最先端データセット上でPIG-Netアーキテクチャの徹底的な実験的解析を行う。
論文 参考訳(メタデータ) (2021-01-28T13:27:55Z) - ODFNet: Using orientation distribution functions to characterize 3D
point clouds [0.0]
点まわりの点配向分布を利用して、点群の表現力のある局所近傍表現を得ます。
新しい ODFNet モデルは ModelNet40 と ScanObjectNN データセットのオブジェクト分類における最先端の精度を実現する。
論文 参考訳(メタデータ) (2020-12-08T19:54:20Z) - DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF
Relocalization [56.15308829924527]
生の3D点から直接3次元特徴の検出と記述を共同で学習するシームズネットワークを提案する。
3次元キーポイントを検出するために,局所的な記述子の識別性を教師なしで予測する。
各種ベンチマーク実験により,本手法はグローバルポイントクラウド検索とローカルポイントクラウド登録の両面で競合する結果が得られた。
論文 参考訳(メタデータ) (2020-07-17T20:21:22Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
私たちは3Dポイントクラウドに3D完全畳み込みネットワークを活用しています。
本稿では,3次元点ごとに検出スコアと記述特徴の両方を密に予測する,新しい,実践的な学習機構を提案する。
本手法は,屋内と屋外の両方のシナリオで最先端の手法を実現する。
論文 参考訳(メタデータ) (2020-03-06T12:51:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。