論文の概要: Counterfactual Explanation for Multivariate Time Series Forecasting with Exogenous Variables
- arxiv url: http://arxiv.org/abs/2511.06906v1
- Date: Mon, 10 Nov 2025 10:00:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:45.194849
- Title: Counterfactual Explanation for Multivariate Time Series Forecasting with Exogenous Variables
- Title(参考訳): 外因性変動を考慮した多変量時系列予測のための実測的説明法
- Authors: Keita Kinjo,
- Abstract要約: いくつかの機械学習モデルはブラックボックスとして機能し、解釈可能性が重要な関心事となる。
この問題に対処する1つのアプローチは、モデル予測に関する洞察を提供することを目的とした、反現実的説明(CE)である。
- 参考スコア(独自算出の注目度): 0.40611352512781856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, machine learning is widely used across various domains, including time series data analysis. However, some machine learning models function as black boxes, making interpretability a critical concern. One approach to address this issue is counterfactual explanation (CE), which aims to provide insights into model predictions. This study focuses on the relatively underexplored problem of generating counterfactual explanations for time series forecasting. We propose a method for extracting CEs in time series forecasting using exogenous variables, which are frequently encountered in fields such as business and marketing. In addition, we present methods for analyzing the influence of each variable over an entire time series, generating CEs by altering only specific variables, and evaluating the quality of the resulting CEs. We validate the proposed method through theoretical analysis and empirical experiments, showcasing its accuracy and practical applicability. These contributions are expected to support real-world decision-making based on time series data analysis.
- Abstract(参考訳): 現在、機械学習は時系列データ分析を含む様々な領域で広く使われている。
しかしながら、いくつかの機械学習モデルはブラックボックスとして機能し、解釈可能性に重要な関心事となる。
この問題に対処する1つのアプローチは、モデル予測に関する洞察を提供することを目的とした、反現実的説明(CE)である。
本研究は,時系列予測における反実的説明を生成するという,比較的過小評価された問題に焦点をあてる。
本稿では,ビジネスやマーケティングなどの分野で頻繁に発生する外因性変数を用いた時系列予測におけるCEの抽出手法を提案する。
さらに、各変数が時系列全体に与える影響を分析し、特定の変数だけを変更してCEを生成し、その結果のCEの品質を評価する方法を提案する。
提案手法を理論的解析および実証実験により検証し,その精度と実用性を示す。
これらのコントリビューションは,時系列データ分析に基づく実世界の意思決定を支援することが期待されている。
関連論文リスト
- TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables [75.83318701911274]
TimeXerは外部情報を取り込み、内因性変数の予測を強化する。
TimeXerは、12の現実世界の予測ベンチマークで一貫した最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-02-29T11:54:35Z) - EAMDrift: An interpretable self retrain model for time series [0.0]
EAMDrift(EAMDrift)は、複数の個人予測器から予測を合成し、性能指標に従って予測を重み付けする新しい手法である。
EAMDriftはデータのアウト・オブ・ディストリビューションパターンに自動的に適応し、各瞬間に使用する最も適切なモデルを特定するように設計されている。
本研究は,EAMDriftが個々のベースラインモデルより20%優れ,非解釈可能なアンサンブルモデルに匹敵する精度が得られることを示す。
論文 参考訳(メタデータ) (2023-05-31T13:25:26Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
本稿では、Channel Dependent(CD)戦略でトレーニングされたモデルが、Channel Dependent(CD)戦略でトレーニングされたモデルよりも優れていることを示す。
以上の結果から,CD手法は高いキャパシティを持つが,分散ドリフト時系列を正確に予測する堅牢性に欠けることがわかった。
本稿では,CI戦略を超越した正規化(PRReg)による予測残差法(Predict Residuals with Regularization, PRReg)を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:15:33Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Explainable Multivariate Time Series Classification: A Deep Neural
Network Which Learns To Attend To Important Variables As Well As Informative
Time Intervals [32.30627405832656]
時系列データは、様々な現実世界のアプリケーションで広く使われている。
このような予測モデルを理解するための重要な基準は、分類に対する時間変化の入力変数の寄与を解明し定量化することである。
本稿では,変数と時間間隔を同時に識別し,分類出力を決定する新しい,モジュール型・畳み込み型特徴抽出・注目機構を提案する。
論文 参考訳(メタデータ) (2020-11-23T19:16:46Z) - Spatiotemporal Attention for Multivariate Time Series Prediction and
Interpretation [17.568599402858037]
最も重要な時間ステップと変数の同時学習のための時間的注意機構(STAM)。
結果: STAMは最先端の予測精度を維持しつつ,正確な解釈可能性の利点を提供する。
論文 参考訳(メタデータ) (2020-08-11T17:34:55Z) - Deep Transformer Models for Time Series Forecasting: The Influenza
Prevalence Case [2.997238772148965]
時系列データは、多くの科学と工学の分野で広く使われている。
本稿では,トランスフォーマーに基づく機械学習モデルを用いた時系列予測の新しい手法を提案する。
提案手法により得られた予測結果は,最先端技術と良好に比較できることを示す。
論文 参考訳(メタデータ) (2020-01-23T00:22:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。