論文の概要: EAMDrift: An interpretable self retrain model for time series
- arxiv url: http://arxiv.org/abs/2305.19837v1
- Date: Wed, 31 May 2023 13:25:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 16:30:57.101273
- Title: EAMDrift: An interpretable self retrain model for time series
- Title(参考訳): eamdrift:時系列の解釈可能な自己再訓練モデル
- Authors: Gon\c{c}alo Mateus, Cl\'audia Soares, Jo\~ao Leit\~ao, Ant\'onio
Rodrigues
- Abstract要約: EAMDrift(EAMDrift)は、複数の個人予測器から予測を合成し、性能指標に従って予測を重み付けする新しい手法である。
EAMDriftはデータのアウト・オブ・ディストリビューションパターンに自動的に適応し、各瞬間に使用する最も適切なモデルを特定するように設計されている。
本研究は,EAMDriftが個々のベースラインモデルより20%優れ,非解釈可能なアンサンブルモデルに匹敵する精度が得られることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of machine learning for time series prediction has become
increasingly popular across various industries thanks to the availability of
time series data and advancements in machine learning algorithms. However,
traditional methods for time series forecasting rely on pre-optimized models
that are ill-equipped to handle unpredictable patterns in data. In this paper,
we present EAMDrift, a novel method that combines forecasts from multiple
individual predictors by weighting each prediction according to a performance
metric. EAMDrift is designed to automatically adapt to out-of-distribution
patterns in data and identify the most appropriate models to use at each moment
through interpretable mechanisms, which include an automatic retraining
process. Specifically, we encode different concepts with different models, each
functioning as an observer of specific behaviors. The activation of the overall
model then identifies which subset of the concept observers is identifying
concepts in the data. This activation is interpretable and based on learned
rules, allowing to study of input variables relations. Our study on real-world
datasets shows that EAMDrift outperforms individual baseline models by 20% and
achieves comparable accuracy results to non-interpretable ensemble models.
These findings demonstrate the efficacy of EAMDrift for time-series prediction
and highlight the importance of interpretability in machine learning models.
- Abstract(参考訳): 時系列予測における機械学習の利用は、時系列データの提供と機械学習アルゴリズムの進歩により、様々な産業で人気が高まっている。
しかし、従来の時系列予測手法は予測不能なデータパターンを扱うのに不適な事前最適化モデルに依存している。
本稿では,複数の個人予測器から予測を合成し,評価基準に従って予測を重み付けする新しい手法であるEAMDriftを提案する。
eamdriftは、データ内の分散パターンに自動的に適応し、自動再トレーニングプロセスを含む解釈可能なメカニズムを通じて、各瞬間に使用する最も適切なモデルを特定するように設計されている。
具体的には、異なるモデルで異なる概念をエンコードし、それぞれが特定の振る舞いのオブザーバとして機能する。
モデル全体の活性化は、データ内の概念を識別する概念オブザーバーのどのサブセットを識別する。
このアクティベーションは解釈可能であり、学習されたルールに基づいて、入力変数の関係を研究することができる。
本研究は,EAMDriftが個々のベースラインモデルより20%優れ,非解釈可能なアンサンブルモデルに匹敵する精度が得られることを示す。
これらの結果は,時系列予測におけるEAMDriftの有効性を示し,機械学習モデルにおける解釈可能性の重要性を強調した。
関連論文リスト
- Recency-Weighted Temporally-Segmented Ensemble for Time-Series Modeling [0.0]
プロセス産業における時系列モデリングは、複雑で多面的で進化するデータ特性を扱うという課題に直面している。
マルチステップ予測のための新しいチャンクベースアプローチであるRecency-Weighted Temporally-Segmented(ReWTS)アンサンブルモデルを導入する。
ノルウェーの排水処理場と飲料水処理場からの2年間のデータをもとに,比較分析を行った。
論文 参考訳(メタデータ) (2024-03-04T16:00:35Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Machine Learning Algorithms for Time Series Analysis and Forecasting [0.0]
時系列データは、販売記録から患者の健康進化指標まで、あらゆる場所で使用されている。
様々な統計的および深層学習モデル、特にARIMA、Prophet、LSTMが検討されている。
我々の研究は、誰でも予測プロセスの理解を深め、現在使われている様々な芸術モデルの状態を識別するために利用できる。
論文 参考訳(メタデータ) (2022-11-25T22:12:03Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
シーケンスモデリング(MAES)のためのモデル・アテンティブ・アンサンブル・ラーニングを提案する。
MAESは、異なるシーケンスダイナミクスの専門家を専門とし、予測を適応的に重み付けるために、注目ベースのゲーティングメカニズムを利用する時系列の専門家の混合物です。
MAESが時系列シフトを受けるデータセットの人気シーケンスモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-02-23T05:23:35Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - The Effectiveness of Discretization in Forecasting: An Empirical Study
on Neural Time Series Models [15.281725756608981]
ニューラル予測アーキテクチャの予測性能に及ぼすデータ入力および出力変換の影響について検討する。
バイナリ化は実値入力の正規化に比べてほぼ常に性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-05-20T15:09:28Z) - For2For: Learning to forecast from forecasts [1.6752182911522522]
本稿では,標準予測手法と機械学習モデルを組み合わせた時系列予測フレームワークを提案する。
M4コンペティションデータセットでテストされたこのアプローチは、四半期シリーズの全ての応募よりも優れており、月次シリーズの受賞アルゴリズム以外のすべてのものよりも正確である。
論文 参考訳(メタデータ) (2020-01-14T03:06:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。