論文の概要: On Stealing Graph Neural Network Models
- arxiv url: http://arxiv.org/abs/2511.07170v2
- Date: Fri, 14 Nov 2025 01:52:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-14 13:23:30.523557
- Title: On Stealing Graph Neural Network Models
- Title(参考訳): グラフニューラルネットワークモデルのステアリングについて
- Authors: Marcin Podhajski, Jan Dubiński, Franziska Boenisch, Adam Dziedzic, Agnieszka Pręgowska, Tomasz P. Michalak,
- Abstract要約: 現在のグラフニューラルネットワーク(GNN)モデルステアリング手法は、被害者モデルに対するクエリに大きく依存している。
本稿では,敵がモデルと非常に限られた相互作用を持つGNNを抽出する方法を実証する。
- 参考スコア(独自算出の注目度): 21.18921580146949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current graph neural network (GNN) model-stealing methods rely heavily on queries to the victim model, assuming no hard query limits. However, in reality, the number of allowed queries can be severely limited. In this paper, we demonstrate how an adversary can extract a GNN with very limited interactions with the model. Our approach first enables the adversary to obtain the model backbone without making direct queries to the victim model and then to strategically utilize a fixed query limit to extract the most informative data. The experiments on eight real-world datasets demonstrate the effectiveness of the attack, even under a very restricted query limit and under defense against model extraction in place. Our findings underscore the need for robust defenses against GNN model extraction threats.
- Abstract(参考訳): 現在のグラフニューラルネットワーク(GNN)モデルステーリング手法は、厳密なクエリ制限を前提として、被害者モデルに対するクエリに大きく依存している。
しかし実際には、許容されるクエリの数は大幅に制限される可能性がある。
本稿では,敵がモデルと非常に限られた相互作用を持つGNNを抽出する方法を実証する。
提案手法では,まず,被害者モデルへの直接クエリを行なわずにモデルバックボーンを得ることができ,次に,固定されたクエリ制限を戦略的に利用して最も情報性の高いデータを抽出する。
8つの実世界のデータセットに対する実験では、非常に制限されたクエリ制限の下でも、モデル抽出に対する防御の下でも、攻撃の有効性が示されている。
以上の結果から,GNNモデル抽出脅威に対する堅牢な防御の必要性が示唆された。
関連論文リスト
- No Query, No Access [50.18709429731724]
被害者のテキストのみを使用して動作する textbfVictim Data-based Adrial Attack (VDBA) を導入する。
被害者モデルへのアクセスを防止するため、公開されている事前トレーニングモデルとクラスタリングメソッドを備えたシャドウデータセットを作成します。
EmotionとSST5データセットの実験によると、VDBAは最先端の手法より優れており、ASRの改善は52.08%である。
論文 参考訳(メタデータ) (2025-05-12T06:19:59Z) - QUEEN: Query Unlearning against Model Extraction [22.434812818540966]
モデル抽出攻撃は、ディープラーニングモデルのセキュリティとプライバシに対して、無視できない脅威となる。
本稿では,QUEEN(QUEry unlEarNing)を提案する。
論文 参考訳(メタデータ) (2024-07-01T13:01:41Z) - Model X-ray:Detecting Backdoored Models via Decision Boundary [62.675297418960355]
バックドア攻撃はディープニューラルネットワーク(DNN)に重大な脆弱性をもたらす
図形化された2次元(2次元)決定境界の解析に基づく新しいバックドア検出手法であるモデルX線を提案する。
提案手法は,クリーンサンプルが支配する意思決定領域とラベル分布の集中度に着目した2つの戦略を含む。
論文 参考訳(メタデータ) (2024-02-27T12:42:07Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
既存のモデル盗難防衛は、被害者の後部確率に偽りの摂動を加え、攻撃者を誤解させる。
本稿では,モデルステルス防衛のための新規かつ効果的なトレーニングフレームワークである分離誘導(InI)を提案する。
モデルの精度を損なうモデル予測に摂動を加えるのとは対照的に、我々はモデルを訓練して、盗むクエリに対して非形式的なアウトプットを生成する。
論文 参考訳(メタデータ) (2023-08-02T05:54:01Z) - MOVE: Effective and Harmless Ownership Verification via Embedded External Features [104.97541464349581]
本稿では,異なる種類のモデル盗難を同時に防ぐために,効果的かつ無害なモデル所有者認証(MOVE)を提案する。
我々は、疑わしいモデルがディフェンダー特定外部特徴の知識を含むかどうかを検証し、所有権検証を行う。
次に、メタ分類器をトレーニングして、モデルが被害者から盗まれたかどうかを判断します。
論文 参考訳(メタデータ) (2022-08-04T02:22:29Z) - Careful What You Wish For: on the Extraction of Adversarially Trained
Models [2.707154152696381]
最近の機械学習(ML)モデルに対する攻撃は、いくつかのセキュリティとプライバシの脅威を引き起こす。
本稿では,敵の学習したモデルに対する抽出攻撃を評価する枠組みを提案する。
本研究では, 自然学習環境下で得られたモデルよりも, 敵の訓練を受けたモデルの方が抽出攻撃に対して脆弱であることを示す。
論文 参考訳(メタデータ) (2022-07-21T16:04:37Z) - MEGEX: Data-Free Model Extraction Attack against Gradient-Based
Explainable AI [1.693045612956149]
機械学習・アズ・ア・サービス(ML)にデプロイされたディープニューラルネットワークは、モデル抽出攻撃の脅威に直面している。
モデル抽出攻撃は知的財産権とプライバシーを侵害する攻撃であり、敵は予測だけを使用してクラウド内の訓練されたモデルを盗む。
本稿では、勾配に基づく説明可能なAIに対するデータフリーモデル抽出攻撃であるMEGEXを提案する。
論文 参考訳(メタデータ) (2021-07-19T14:25:06Z) - Model Extraction Attacks on Graph Neural Networks: Taxonomy and
Realization [40.37373934201329]
GNNモデルに対するモデル抽出攻撃について検討・開発する。
まず、GNNモデル抽出の文脈で脅威モデリングを定式化する。
次に、攻撃を実装するために、各脅威においてアクセス可能な知識を利用する詳細な方法を示す。
論文 参考訳(メタデータ) (2020-10-24T03:09:37Z) - Model Extraction Attacks against Recurrent Neural Networks [1.2891210250935146]
繰り返しニューラルネットワーク(RNN)に対するモデル抽出攻撃の脅威について検討する。
長い短期記憶(LSTM)から単純なRNNを用いて精度の高いモデルを抽出できるかどうかを論じる。
次に、特に損失関数とより複雑なアーキテクチャを構成することにより、精度の高いモデルを効率的に抽出できることを示す。
論文 参考訳(メタデータ) (2020-02-01T01:47:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。