論文の概要: Towards Outcome-Oriented, Task-Agnostic Evaluation of AI Agents
- arxiv url: http://arxiv.org/abs/2511.08242v1
- Date: Wed, 12 Nov 2025 01:48:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-12 20:17:03.714998
- Title: Towards Outcome-Oriented, Task-Agnostic Evaluation of AI Agents
- Title(参考訳): AIエージェントのアウトカム指向・タスク非依存評価に向けて
- Authors: Waseem AlShikh, Muayad Sayed Ali, Brian Kennedy, Dmytro Mozolevskyi,
- Abstract要約: 白書では、AIエージェントの成果に基づくタスク非依存のパフォーマンス指標11の新たなフレームワークを提案する。
本稿では、ゴール完了率(GCR)、自律度指数(AIx)、マルチステップタスクレジリエンス(MTR)、ビジネスインパクト効率(BIE)などの指標を紹介する。
この結果から, エージェント設計の相違が顕著であり, ハイブリットエージェントを一貫した高性能モデルとして強調した。
- 参考スコア(独自算出の注目度): 1.0305173936249623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI agents proliferate across industries and applications, evaluating their performance based solely on infrastructural metrics such as latency, time-to-first-token, or token throughput is proving insufficient. These metrics fail to capture the quality of an agent's decisions, its operational autonomy, or its ultimate business value. This white paper proposes a novel, comprehensive framework of eleven outcome-based, task-agnostic performance metrics for AI agents that transcend domain boundaries. These metrics are designed to enable organizations to evaluate agents based on the quality of their decisions, their degree of autonomy, their adaptability to new challenges, and the tangible business value they deliver, regardless of the underlying model architecture or specific use case. We introduce metrics such as Goal Completion Rate (GCR), Autonomy Index (AIx), Multi-Step Task Resilience (MTR), and Business Impact Efficiency (BIE). Through a large-scale simulated experiment involving four distinct agent architectures (ReAct, Chain-of-Thought, Tool-Augmented, Hybrid) across five diverse domains (Healthcare, Finance, Marketing, Legal, and Customer Service), we demonstrate the framework's efficacy. Our results reveal significant performance trade-offs between different agent designs, highlighting the Hybrid Agent as the most consistently high-performing model across the majority of our proposed metrics, achieving an average Goal Completion Rate of 88.8\% and the highest Return on Investment (ROI). This work provides a robust, standardized methodology for the holistic evaluation of AI agents, paving the way for more effective development, deployment, and governance.
- Abstract(参考訳): AIエージェントが業界やアプリケーション全体に普及するにつれて、レイテンシやタイム・ツー・ファースト、トークンスループットといったインフラストラクチャメトリクスのみに基づくパフォーマンス評価が不十分であることが証明されている。
これらのメトリクスは、エージェントの判断の質、運用上の自律性、最終的なビジネス価値を捉えるのに失敗します。
白書では、ドメイン境界を超越するAIエージェントに対して、結果ベースでタスクに依存しない11のパフォーマンスメトリクスの、包括的かつ包括的フレームワークを提案する。
これらのメトリクスは、基盤となるモデルアーキテクチャや特定のユースケースに関わらず、意思決定の品質、自律性の度合い、新たな課題への適応性、提供する具体的なビジネス価値に基づいてエージェントを評価することができるように設計されています。
本稿では、ゴール完了率(GCR)、自律度指数(AIx)、マルチステップタスクレジリエンス(MTR)、ビジネスインパクト効率(BIE)などの指標を紹介する。
4つの異なるエージェントアーキテクチャ(ReAct、Chain-of-Thought、Tool-Augmented、Hybrid)を5つの異なるドメイン(ヘルスケア、ファイナンス、マーケティング、法務、顧客サービス)で組み合わせた大規模なシミュレーション実験を通じて、このフレームワークの有効性を実証した。
提案した指標の大部分がHybrid Agentであり,平均ゴール完了率88.8\%,最高投資利益率(ROI)を達成している。
この作業は、AIエージェントの全体的な評価のための堅牢で標準化された方法論を提供し、より効率的な開発、デプロイメント、ガバナンスのための道を開く。
関連論文リスト
- EmbodiedBrain: Expanding Performance Boundaries of Task Planning for Embodied Intelligence [17.644658293987955]
身体的AIエージェントは、物理的環境における堅牢な空間認識、効果的なタスク計画、適応実行を行うことができる。
現在の大規模言語モデル (LLMs) とマルチモーダルLLM (MLLMs) の具体化タスクは、重要な制約に悩まされている。
EmbodiedBrain は 7B と 32B のパラメータサイズで利用できる新しい視覚言語基盤モデルである。
論文 参考訳(メタデータ) (2025-10-23T14:05:55Z) - How can we assess human-agent interactions? Case studies in software agent design [52.953425368394306]
我々は,人間とエージェントの相互作用の厳密な評価に向けて,二つの大きな一歩を踏み出した。
エージェント設計のより効率的な人間中心評価のためのフレームワークであるPULSEを提案する。
私たちは、オープンソースのソフトウェアエージェントOpenHandsを中心に構築された大規模なWebプラットフォームにフレームワークをデプロイします。
論文 参考訳(メタデータ) (2025-10-10T19:04:28Z) - SEEA-R1: Tree-Structured Reinforcement Fine-Tuning for Self-Evolving Embodied Agents [58.174206358223415]
自己進化型エボダイドエージェント(SeEA-R1)は、自己進化型エボダイドエージェント用に設計された最初の強化微細調整フレームワークである。
本研究は,SEEA-R1が自律適応と報酬駆動型自己進化をサポートすることを示す。
論文 参考訳(メタデータ) (2025-06-26T18:00:07Z) - Sustainability via LLM Right-sizing [21.17523328451591]
大規模言語モデル(LLM)はますます組織に組み込まれている。
本研究は,10の日常業務において,プロプライエタリでオープンウェイトなLDMを11個評価することによって,実証的な回答を提供する。
その結果, GPT-4oは高い性能を保ちながら, コストと環境のフットプリントが著しく高いことがわかった。
論文 参考訳(メタデータ) (2025-04-17T04:00:40Z) - The BrowserGym Ecosystem for Web Agent Research [151.90034093362343]
BrowserGymエコシステムは、Webエージェントの効率的な評価とベンチマークの必要性の高まりに対処する。
本稿では,Webエージェント研究のためのBrowserGymベースの拡張エコシステムを提案する。
大規模なマルチベンチマークWebエージェント実験を初めて実施し、6つのWebエージェントベンチマークで6つの最先端LCMの性能を比較した。
論文 参考訳(メタデータ) (2024-12-06T23:43:59Z) - Can a GPT4-Powered AI Agent Be a Good Enough Performance Attribution Analyst? [0.0]
本研究では,AIエージェントの様々なパフォーマンス属性タスクへの適用について紹介する。
パフォーマンスドライバの分析では93%を超え、マルチレベルの属性計算では100%を達成し、公式な試験基準をシミュレートするQA演習では84%を超える精度を達成している。
論文 参考訳(メタデータ) (2024-03-15T17:12:57Z) - Rational Decision-Making Agent with Internalized Utility Judgment [88.01612847081677]
大規模言語モデル(LLM)は目覚ましい進歩を示し、従来のNLPアプリケーションを超えて複雑な多段階決定タスクを実行できるエージェントにLLMを開発するための重要な努力を惹きつけている。
本稿では,RadAgentを提案する。このRadAgentは,経験探索とユーティリティ学習を含む反復的なフレームワークを通じて,合理性の発展を促進する。
ToolBenchデータセットの実験結果は、RadAgentがベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-08-24T03:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。