論文の概要: Case Study: Transformer-Based Solution for the Automatic Digitization of Gas Plants
- arxiv url: http://arxiv.org/abs/2511.08609v1
- Date: Thu, 13 Nov 2025 01:00:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.138437
- Title: Case Study: Transformer-Based Solution for the Automatic Digitization of Gas Plants
- Title(参考訳): ケーススタディ: 変圧器を用いたガスプラントの自動ディジタル化ソリューション
- Authors: I. Bailo, F. Buonora, G. Ciarfaglia, L. T. Consoli, A. Evangelista, M. Gabusi, M. Ghiani, C. Petracca Ciavarella, F. Picariello, F. Sarcina, F. Tuosto, V. Zullo, L. Airoldi, G. Bruno, D. D. Gobbo, S. Pezzenati, G. A. Tona,
- Abstract要約: 本研究の目的は、植物のデジタル化に必要な情報の抽出を自動化する人工知能技術に基づく効果的なソリューションを設計することである。
このソリューションはプラントを入力としてP&IDを受け取り、それぞれpdfフォーマットで、OCR、ビジョン、オブジェクト検出推論、最適化アルゴリズムを使って2つの情報からなる出力を返す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The energy transition is a key theme of the last decades to determine a future of eco-sustainability, and an area of such importance cannot disregard digitization, innovation and the new technological tools available. This is the context in which the Generative Artificial Intelligence models described in this paper are positioned, developed by Engineering Ingegneria Informatica SpA in order to automate the plant structures acquisition of SNAM energy infrastructure, a leading gas transportation company in Italy and Europe. The digitization of a gas plant consists in registering all its relevant information through the interpretation of the related documentation. The aim of this work is therefore to design an effective solution based on Artificial Intelligence techniques to automate the extraction of the information necessary for the digitization of a plant, in order to streamline the daily work of MGM users. The solution received the P&ID of the plant as input, each one in pdf format, and uses OCR, Vision LLM, Object Detection, Relational Reasoning and optimization algorithms to return an output consisting of two sets of information: a structured overview of the relevant design data and the hierarchical framework of the plant. To achieve convincing results, we extend a state-of-the-art model for Scene Graph Generation introducing a brand new Transformer architecture with the aim of deepening the analysis of the complex relations between the plant's components. The synergistic use of the listed AI-based technologies allowed to overcome many obstacles arising from the high variety of data, due to the lack of standardization. An accuracy of 91\% has been achieved in the extraction of textual information relating to design data. Regarding the plants topology, 93\% of components are correctly identified and the hierarchical structure is extracted with an accuracy around 80\%.
- Abstract(参考訳): エネルギー移行は、エコサステナビリティの将来を決定するための過去数十年の重要なテーマであり、そのような重要な領域は、デジタル化やイノベーション、新しい技術ツールを無視することはできない。
本論文は,イタリアとヨーロッパの主要なガス輸送企業であるSNAMエネルギーインフラの工場構造取得を自動化するため,Ingegneria Informatica SpAによって開発されたジェネレーティブ・人工知能モデルの位置決めである。
ガスプラントのデジタル化は、関連するドキュメントの解釈を通じて、関連するすべての情報を登録する。
本研究の目的は、MGM利用者の日常業務を効率化するために、植物のデジタル化に必要な情報の抽出を自動化する人工知能技術に基づく効果的なソリューションを設計することである。
このソリューションは入力としてプラントのP&IDを受け取り、それぞれがpdf形式で、OCR、ビジョンLLM、オブジェクト検出、リレーショナル推論、最適化アルゴリズムを使用して、2つの情報からなる出力を返却した。
そこで我々は,プラントのコンポーネント間の複雑な関係の分析をより深めることを目的として,新しいトランスフォーマーアーキテクチャを導入したシーングラフ生成の最先端モデルを拡張した。
リストアップされたAIベースの技術の相乗的使用により、標準化の欠如により、多種多様なデータから生じる多くの障害を克服することができた。
設計データに関するテキスト情報の抽出において、91\%の精度が達成されている。
植物トポロジーについては、成分の93\%を正しく同定し、階層構造を約80\%の精度で抽出する。
関連論文リスト
- FELA: A Multi-Agent Evolutionary System for Feature Engineering of Industrial Event Log Data [7.129004248608012]
イベントログデータは、現代のデジタルサービスにとって最も価値のある資産の1つである。
AutoMLや遺伝的手法のような既存の機能エンジニアリングアプローチは、しばしば限定的な説明責任に悩まされる。
複雑なイベントログデータから有意義かつ高性能な特徴を自律的に抽出するマルチエージェント進化システムFELAを提案する。
論文 参考訳(メタデータ) (2025-10-29T06:57:32Z) - WebShaper: Agentically Data Synthesizing via Information-Seeking Formalization [68.46693401421923]
WebShaperは集合論を通してISタスクを体系的に定式化する。
WebShaperは、GAIAおよびWebWalkerQAベンチマーク上で、オープンソースISエージェントの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-07-20T17:53:37Z) - AutoChemSchematic AI: Agentic Physics-Aware Automation for Chemical Manufacturing Scale-Up [2.5875933818780363]
現在のAIシステムは、重要なエンジニアリングスキーマを確実に生成することはできない。
産業用PFDとPIDの自動生成のためのクローズドループ物理対応フレームワークを提案する。
本研究では,本フレームワークが高忠実度でシミュレータ検証されたプロセス記述を生成することを示す。
論文 参考訳(メタデータ) (2025-05-30T13:32:00Z) - Data-Driven Breakthroughs and Future Directions in AI Infrastructure: A Comprehensive Review [0.0]
本稿では,過去15年間の人工知能(AI)の大きなブレークスルーを包括的に合成する。
計算リソース、データアクセス、アルゴリズム革新の収束をトレースすることで、AIの進化における重要なインフレクションポイントを特定する。
論文 参考訳(メタデータ) (2025-05-22T15:12:48Z) - Accelerating Manufacturing Scale-Up from Material Discovery Using Agentic Web Navigation and Retrieval-Augmented AI for Process Engineering Schematics Design [2.368662284133926]
プロセス・フロー・ダイアグラム(PFD)とプロセス・アンド・インスツルメンテーション・ダイアグラム(PID)は産業プロセスの設計、制御、安全性にとって重要なツールである。
精密かつ規則に準拠した図の作成は、特に自動化とデジタル化の時代において、材料発見から工業生産へのブレークスルーを拡大する上で、依然として重要な課題である。
本稿では,知識獲得と生成を伴う2段階のアプローチを通じて,これらの課題に対処する自律型エージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-08T13:36:42Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することにより、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
GenAIはDTの構築と更新を推進し、予測精度を改善し、多様なスマート製造に備える。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Automatic Graph Topology-Aware Transformer [50.2807041149784]
マイクロレベルおよびマクロレベルの設計による包括的グラフトランスフォーマー検索空間を構築した。
EGTASはマクロレベルでのグラフトランスフォーマートポロジとマイクロレベルでのグラフ認識戦略を進化させる。
グラフレベルおよびノードレベルのタスクに対して,EGTASの有効性を示す。
論文 参考訳(メタデータ) (2024-05-30T07:44:31Z) - ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining [56.15126714863963]
ChemMinerは、文学から化学データを抽出するエンドツーエンドのフレームワークである。
ChemMinerには、コア参照マッピングのためのテキスト分析エージェント、非テキスト情報抽出のためのマルチモーダルエージェント、データ生成のための合成分析エージェントの3つの特殊エージェントが組み込まれている。
実験の結果,ヒト化学者に匹敵する反応同定率を示すとともに,高い精度,リコール,F1スコアで処理時間を著しく短縮した。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - KAXAI: An Integrated Environment for Knowledge Analysis and Explainable
AI [0.0]
本稿では,AutoML,XAI,合成データ生成を統合したシステムの設計について述べる。
このシステムは、複雑度を抽象化し、高いユーザビリティを提供しながら、機械学習のパワーをナビゲートし活用することができる。
論文 参考訳(メタデータ) (2023-12-30T10:20:47Z) - A Comprehensive Survey on Applications of Transformers for Deep Learning
Tasks [60.38369406877899]
Transformerは、シーケンシャルデータ内のコンテキスト関係を理解するために自己認識メカニズムを使用するディープニューラルネットワークである。
Transformerモデルは、入力シーケンス要素間の長い依存関係を処理し、並列処理を可能にする。
我々の調査では、トランスフォーマーベースのモデルのためのトップ5のアプリケーションドメインを特定します。
論文 参考訳(メタデータ) (2023-06-11T23:13:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。