論文の概要: Accelerating Manufacturing Scale-Up from Material Discovery Using Agentic Web Navigation and Retrieval-Augmented AI for Process Engineering Schematics Design
- arxiv url: http://arxiv.org/abs/2412.05937v1
- Date: Sun, 08 Dec 2024 13:36:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:58:29.706967
- Title: Accelerating Manufacturing Scale-Up from Material Discovery Using Agentic Web Navigation and Retrieval-Augmented AI for Process Engineering Schematics Design
- Title(参考訳): エージェントWebナビゲーションと検索AIを用いたプロセス工学的設計のための材料発見による製造スケールアップの高速化
- Authors: Sakhinana Sagar Srinivas, Akash Das, Shivam Gupta, Venkataramana Runkana,
- Abstract要約: プロセス・フロー・ダイアグラム(PFD)とプロセス・アンド・インスツルメンテーション・ダイアグラム(PID)は産業プロセスの設計、制御、安全性にとって重要なツールである。
精密かつ規則に準拠した図の作成は、特に自動化とデジタル化の時代において、材料発見から工業生産へのブレークスルーを拡大する上で、依然として重要な課題である。
本稿では,知識獲得と生成を伴う2段階のアプローチを通じて,これらの課題に対処する自律型エージェントフレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.368662284133926
- License:
- Abstract: Process Flow Diagrams (PFDs) and Process and Instrumentation Diagrams (PIDs) are critical tools for industrial process design, control, and safety. However, the generation of precise and regulation-compliant diagrams remains a significant challenge, particularly in scaling breakthroughs from material discovery to industrial production in an era of automation and digitalization. This paper introduces an autonomous agentic framework to address these challenges through a twostage approach involving knowledge acquisition and generation. The framework integrates specialized sub-agents for retrieving and synthesizing multimodal data from publicly available online sources and constructs ontological knowledge graphs using a Graph Retrieval-Augmented Generation (Graph RAG) paradigm. These capabilities enable the automation of diagram generation and open-domain question answering (ODQA) tasks with high contextual accuracy. Extensive empirical experiments demonstrate the frameworks ability to deliver regulation-compliant diagrams with minimal expert intervention, highlighting its practical utility for industrial applications.
- Abstract(参考訳): プロセス・フロー・ダイアグラム(PFD)とプロセス・アンド・インスツルメンテーション・ダイアグラム(PID)は産業プロセスの設計、制御、安全性にとって重要なツールである。
しかし、物質発見から産業生産まで、自動化とデジタル化の時代におけるブレークスルーを拡大する上で、厳密かつ規則に準拠した図の作成は依然として重要な課題である。
本稿では,知識獲得と生成を伴う2段階のアプローチを通じて,これらの課題に対処する自律型エージェントフレームワークを提案する。
このフレームワークは、公開されているオンラインソースからマルチモーダルデータを検索および合成するための特別なサブエージェントを統合し、Graph Retrieval-Augmented Generation (Graph RAG)パラダイムを使用して、オントロジ的な知識グラフを構築する。
これらの機能は、文脈精度の高いダイアグラム生成とオープンドメイン質問応答(ODQA)タスクの自動化を可能にする。
大規模な実証実験は、規制に準拠したダイアグラムを最小限の専門家の介入で提供できるフレームワーク能力を示し、産業アプリケーションにおける実用性を強調している。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Retrieval-Augmented Instruction Tuning for Automated Process Engineering Calculations : A Tool-Chaining Problem-Solving Framework with Attributable Reflection [0.0]
オープンでカスタマイズ可能な小型コード言語モデル(SLM)を強化するためにRAIT(Retrieval-Augmented Instruction-Tuning)を活用する新しい自律エージェントフレームワークを提案する。
命令チューニングされたコードSLMと外部ツールを使用してRACG(Retrieval-Augmented Code Generation)を組み合わせることで、エージェントは自然言語仕様からコードを生成し、デバッグし、最適化する。
我々のアプローチは、専門的なプロセスエンジニアリングタスクのための基礎的AIモデルの欠如の限界に対処し、説明可能性、知識編集、費用対効果の利点を提供する。
論文 参考訳(メタデータ) (2024-08-28T15:33:47Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
本稿では,化学・プロセス産業における複雑な問題の解決を目的としたAI駆動型フレームワークであるプロセスエンジニアリングオペレーションアシスタント(PEOA)を紹介する。
このフレームワークはメタエージェントによって構成されたモジュラーアーキテクチャを採用しており、中央コーディネータとして機能している。
その結果、計算の自動化、プロトタイピングの高速化、産業プロセスに対するAIによる意思決定支援におけるフレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-08-23T13:52:47Z) - Automated Knowledge Graph Learning in Industrial Processes [0.0]
本稿では,時系列データから知識グラフを自動学習するフレームワークについて紹介する。
我々のフレームワークは、産業データセットに固有の複雑さに対処し、意思決定、プロセス最適化、知識発見を改善する知識グラフに変換する。
論文 参考訳(メタデータ) (2024-07-02T09:47:56Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
異常検出は、通常の値空間とは異なる異常状態、インスタンス、あるいはデータポイントを検出する方法を記述する。
本稿では,産業生産における人工知能へのデータ中心のアプローチに寄与する。
論文 参考訳(メタデータ) (2022-09-21T08:14:34Z) - OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer
Learning for Telepresence Robotics [124.08684545010664]
画像からのシーングラフ生成は、ロボット工学のようなアプリケーションに非常に関心を持つタスクである。
オントロジー誘導シーングラフ生成(OG-SGG)と呼ばれるフレームワークの初期近似を提案する。
論文 参考訳(メタデータ) (2022-02-21T13:23:15Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Machine Learning based Indicators to Enhance Process Monitoring by
Pattern Recognition [0.4893345190925177]
パターンタイプと強度を組み合わせた機械学習に基づく指標のための新しいフレームワークを提案する。
半導体産業のケーススタディでは,従来のプロセス制御を越え,高品質な実験結果を得る。
論文 参考訳(メタデータ) (2021-03-24T10:13:20Z) - Interpretable Hyperspectral AI: When Non-Convex Modeling meets
Hyperspectral Remote Sensing [57.52865154829273]
ハイパースペクトルイメージング、別名画像分光法は、地球科学リモートセンシング(RS)におけるランドマーク技術です。
過去10年間で、主に熟練した専門家によってこれらのハイパースペクトル(HS)製品を分析するための取り組みが行われています。
このため、さまざまなHS RSアプリケーションのためのよりインテリジェントで自動的なアプローチを開発することが急務です。
論文 参考訳(メタデータ) (2021-03-02T03:32:10Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。