論文の概要: ForeSWE: Forecasting Snow-Water Equivalent with an Uncertainty-Aware Attention Model
- arxiv url: http://arxiv.org/abs/2511.08856v1
- Date: Thu, 13 Nov 2025 01:12:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.260536
- Title: ForeSWE: Forecasting Snow-Water Equivalent with an Uncertainty-Aware Attention Model
- Title(参考訳): ForeSWE:不確実性意識モデルと等価な積雪水予測
- Authors: Krishu K Thapa, Supriya Savalkar, Bhupinderjeet Singh, Trong Nghia Hoang, Kirti Rajagopalan, Ananth Kalyanaraman,
- Abstract要約: 深層学習と古典的確率論的手法を統合した新しい確率時間予測モデルであるForeSWEを提案する。
本研究は,米国西部の512駅から得られたデータをもとに評価を行った。
- 参考スコア(独自算出の注目度): 14.244078924843924
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Various complex water management decisions are made in snow-dominant watersheds with the knowledge of Snow-Water Equivalent (SWE) -- a key measure widely used to estimate the water content of a snowpack. However, forecasting SWE is challenging because SWE is influenced by various factors including topography and an array of environmental conditions, and has therefore been observed to be spatio-temporally variable. Classical approaches to SWE forecasting have not adequately utilized these spatial/temporal correlations, nor do they provide uncertainty estimates -- which can be of significant value to the decision maker. In this paper, we present ForeSWE, a new probabilistic spatio-temporal forecasting model that integrates deep learning and classical probabilistic techniques. The resulting model features a combination of an attention mechanism to integrate spatiotemporal features and interactions, alongside a Gaussian process module that provides principled quantification of prediction uncertainty. We evaluate the model on data from 512 Snow Telemetry (SNOTEL) stations in the Western US. The results show significant improvements in both forecasting accuracy and prediction interval compared to existing approaches. The results also serve to highlight the efficacy in uncertainty estimates between different approaches. Collectively, these findings have provided a platform for deployment and feedback by the water management community.
- Abstract(参考訳): SWE(Snow-Water Equivalent, SWE)は, 積雪の含水率を推定するための重要な指標である。
しかし,SWEは地形や環境条件など様々な要因の影響を受けており,時空間変動が観察されているため,SWEの予測は困難である。
SWE予測に対する古典的なアプローチは、これらの空間的・時間的相関を適切に活用していないし、不確実性の推定も提供していない。
本稿では,深層学習と古典的確率論的手法を統合した,確率的時空間予測モデルであるForeSWEを提案する。
得られたモデルは、時空間的特徴と相互作用を統合するための注意機構と、予測の不確実性の原理的な定量化を提供するガウス過程モジュールを組み合わせたものである。
米国西部のSNOTEL(Snow Telemetry)512局のデータから,そのモデルを評価する。
その結果,既存手法と比較して予測精度と予測間隔が有意に向上した。
結果はまた、異なるアプローチ間の不確実性推定の有効性を強調している。
これらの発見は総合的に、水管理コミュニティによるデプロイメントとフィードバックのためのプラットフォームを提供してきた。
関連論文リスト
- Uncertainty-aware segmentation for rainfall prediction post processing [0.7646713951724011]
日次累積降水量の予測を後処理するための不確実性を考慮した深層学習モデルについて検討する。
本研究では,様々な最先端モデルを比較し,よく知られたSDE-Netの変種を提案する。
その結果,すべてのディープラーニングモデルは,平均的ベースラインNWPソリューションよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-08-28T16:31:40Z) - Using Deep Learning to Identify Initial Error Sensitivity for Interpretable ENSO Forecasts [0.0]
本稿では,ディープラーニングとモデル・アナログ予測を統合した解釈可能なモデル・アナログを提案する。
我々は,地域地球系モデルバージョン2大アンサンブルを用いて,季節ごとの時間スケールでエルニーニョ南部振動(ENSO)を予測する。
その結果,赤道太平洋海面温度異常の予測は9~12ヶ月で10%改善した。
論文 参考訳(メタデータ) (2024-04-23T18:10:18Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
不確実性は時系列予測タスクに不可欠な考慮事項である。
本研究では,交通予測の不確かさの定量化に焦点をあてる。
STUQ(Deep S-Temporal Uncertainity Quantification)を開発した。
論文 参考訳(メタデータ) (2022-08-11T15:21:53Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
アンサンブル予測は、これまでのところ、関連する予測を生成するための最も成功したアプローチであり、その不確実性を見積もっている。
アンサンブル予測の主な制限は、高い計算コストと異なる不確実性の源を捕捉し定量化することの難しさである。
本研究は,1つの決定論的予測のみを入力として,システムの修正状態と状態不確かさを予測するために訓練されたANNの性能を評価するための概念モデル実験である。
論文 参考訳(メタデータ) (2021-11-29T16:52:17Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。