論文の概要: Weaver: Kronecker Product Approximations of Spatiotemporal Attention for Traffic Network Forecasting
- arxiv url: http://arxiv.org/abs/2511.08888v1
- Date: Thu, 13 Nov 2025 01:14:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.282247
- Title: Weaver: Kronecker Product Approximations of Spatiotemporal Attention for Traffic Network Forecasting
- Title(参考訳): Weaver: トラフィックネットワーク予測のための時空間注意のKronecker製品近似
- Authors: Christopher Cheong, Gary Davis, Seongjin Choi,
- Abstract要約: 交通ネットワークとITSは正確で堅牢な予測モデルを必要とする。
最近のアプローチ、特にTransformerベースのアーキテクチャは予測性能を改善しているが、高い計算オーバーヘッドを犠牲にしていることが多い。
- 参考スコア(独自算出の注目度): 0.6918455480131249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatiotemporal forecasting on transportation networks is a complex task that requires understanding how traffic nodes interact within a dynamic, evolving system dictated by traffic flow dynamics and social behavioral patterns. The importance of transportation networks and ITS for modern mobility and commerce necessitates forecasting models that are not only accurate but also interpretable, efficient, and robust under structural or temporal perturbations. Recent approaches, particularly Transformer-based architectures, have improved predictive performance but often at the cost of high computational overhead and diminished architectural interpretability. In this work, we introduce Weaver, a novel attention-based model that applies Kronecker product approximations (KPA) to decompose the PN X PN spatiotemporal attention of O(P^2N^2) complexity into local P X P temporal and N X N spatial attention maps. This Kronecker attention map enables our Parallel-Kronecker Matrix-Vector product (P2-KMV) for efficient spatiotemporal message passing with O(P^2N + N^2P) complexity. To capture real-world traffic dynamics, we address the importance of negative edges in modeling traffic behavior by introducing Valence Attention using the continuous Tanimoto coefficient (CTC), which provides properties conducive to precise latent graph generation and training stability. To fully utilize the model's learning capacity, we introduce the Traffic Phase Dictionary for self-conditioning. Evaluations on PEMS-BAY and METR-LA show that Weaver achieves competitive performance across model categories while training more efficiently.
- Abstract(参考訳): 交通ネットワークにおける時空間予測は、トラフィックフローのダイナミクスと社会的行動パターンによって予測される動的で進化するシステムの中で、トラフィックノードがどのように相互作用するかを理解する必要がある複雑なタスクである。
モビリティと商業にとっての輸送ネットワークとITSの重要性は、正確なだけでなく、構造的または時間的摂動の下では、解釈可能で、効率的で、堅牢である予測モデルを必要とする。
近年のアプローチ、特にTransformerベースのアーキテクチャは予測性能を向上しているが、高い計算オーバーヘッドとアーキテクチャの解釈可能性の低下を犠牲にしていることが多い。
本研究では,Kronecker積近似(KPA)を適用した新しい注意モデルであるWeaverを導入し,O(P^2N^2)複雑性の時間的注意を局所的なPXP時間的およびNXN空間的注意マップに分解する。
このKroneckerアテンションマップは、O(P^2N + N^2P)の複雑さを伴う効率的な時空間メッセージパッシングのためのP2-KMV(Parallel-Kronecker Matrix-Vector product)を可能にする。
実世界の交通動態を捉えるために,連続的谷本係数(CTC)を用いたValence Attentionを導入することにより,交通行動のモデル化における負のエッジの重要性に対処する。
モデルの学習能力をフル活用するために,自己条件付き交通相辞書を導入する。
PEMS-BAYとMETR-LAの評価は、ウィーバーがより効率的にトレーニングしながら、モデルカテゴリ間での競争性能を達成することを示している。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - SEPT: Towards Efficient Scene Representation Learning for Motion
Prediction [19.111948522155004]
本稿では,自己教師付き学習を活用し,複雑な交通シーンのための強力なモデルを開発するためのモデリングフレームワークSEPTを提案する。
実験により、SEPTはアーキテクチャ設計や機能エンジニアリングを伴わず、Argoverse 1 と Argoverse 2 のモーション予測ベンチマークで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-09-26T21:56:03Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
本稿では,STTD予測を大規模に行うためのコンピュータ・ミクサーの適応版を提案する。
我々の結果は、この単純な効率の良いソリューションが、いくつかのトラフィックベンチマークでテストした場合、SOTAベースラインに匹敵する可能性があることを驚くほど示している。
本研究は, 実世界のSTTD予測において, 簡便な有効モデルの探索に寄与する。
論文 参考訳(メタデータ) (2023-07-04T05:19:19Z) - Dynamic Graph Convolutional Network with Attention Fusion for Traffic
Flow Prediction [10.3426659705376]
本稿では,同期時空間相関をモデル化するための注意融合型動的グラフ畳み込みネットワークを提案する。
我々は、4つの実世界の交通データセットにおいて、我々の手法が18のベースライン法と比較して最先端の性能を上回ることを示す広範な実験を行った。
論文 参考訳(メタデータ) (2023-02-24T12:21:30Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
本稿では,交通流を正確に予測する新しい交通予測モデルSTLGRUを提案する。
提案するSTLGRUは,交通ネットワークの局所的・大域的空間的関係を効果的に捉えることができる。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2022-12-08T20:24:59Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
非効率な時空間継手線形注意(SSTLA)と呼ばれる交通予測のための新しいディープラーニングモデルを提案する。
SSTLAは、全時間ノード間のグローバル依存を効率的に捉えるために、ジョイントグラフに線形注意を適用する。
実世界の2つの交通データセットであるイングランドとテンポラル7の実験は、我々のSTJLAが最先端のベースラインよりも9.83%と3.08%の精度でMAE測定を達成できることを示した。
論文 参考訳(メタデータ) (2021-12-04T06:39:18Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
建設工事の影響下での交通速度予測モデルを提案する。
このモデルは、強力なアテンションベースの時間グラフ畳み込みアーキテクチャに基づいているが、様々なチャネルを利用して異なる情報ソースを統合する。
このモデルは、2つのベンチマークデータセットと、北バージニアの散らかった道路の角で収集した新しいデータセットで評価されている。
論文 参考訳(メタデータ) (2021-10-04T16:07:37Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
このような相関関係は普遍的であり、交通流において重要な役割を担っていると我々は主張する。
交通センサの局所的時空間コンテキストを構築するための新しい時空間学習フレームワークを提案する。
提案したSTNNモデルは、目に見えない任意のトラフィックネットワークに適用できる。
論文 参考訳(メタデータ) (2021-09-11T09:04:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。