論文の概要: Siegel Neural Networks
- arxiv url: http://arxiv.org/abs/2511.09577v1
- Date: Fri, 14 Nov 2025 01:00:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-14 22:53:22.34384
- Title: Siegel Neural Networks
- Title(参考訳): シーゲルニューラルネットワーク
- Authors: Xuan Son Nguyen, Aymeric Histace, Nistor Grozavu,
- Abstract要約: 本稿では,シーゲル空間上での識別ニューラルネットワーク構築のための新しい手法を提案する。
その結果,全データセットにおける最先端性能の実証に成功している。
- 参考スコア(独自算出の注目度): 13.967997485149192
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Riemannian symmetric spaces (RSS) such as hyperbolic spaces and symmetric positive definite (SPD) manifolds have become popular spaces for representation learning. In this paper, we propose a novel approach for building discriminative neural networks on Siegel spaces, a family of RSS that is largely unexplored in machine learning tasks. For classification applications, one focus of recent works is the construction of multiclass logistic regression (MLR) and fully-connected (FC) layers for hyperbolic and SPD neural networks. Here we show how to build such layers for Siegel neural networks. Our approach relies on the quotient structure of those spaces and the notation of vector-valued distance on RSS. We demonstrate the relevance of our approach on two applications, i.e., radar clutter classification and node classification. Our results successfully demonstrate state-of-the-art performance across all datasets.
- Abstract(参考訳): 双曲空間や対称正定値多様体(SPD)のようなリーマン対称空間(RSS)は、表現学習の一般的な空間となっている。
本稿では、機械学習タスクにおいてほとんど探索されていないRSSの族であるシーゲル空間上での識別ニューラルネットワーク構築のための新しいアプローチを提案する。
分類応用において、最近の研究の焦点は、双曲型ニューラルネットワークとSPD型ニューラルネットワークのための多クラスロジスティック回帰(MLR)層と完全連結型(FC)層の構築である。
ここでは、ジーゲルニューラルネットワークのためのそのような層を構築する方法を示す。
提案手法は,これらの空間の商構造と,RSS上のベクトル値距離の表記に依存する。
我々は,レーダクラッタ分類とノード分類という2つの応用に対するアプローチの有効性を実証する。
その結果,全データセットにおける最先端性能の実証に成功している。
関連論文リスト
- Matrix Manifold Neural Networks++ [18.385670036798707]
我々はSPDニューラルネットワークのための完全接続層を設計する。
本稿では,プロジェクタの観点から,グラスマン対数写像を用いて逆プロパゲーションを行う手法を提案する。
論文 参考訳(メタデータ) (2024-05-29T15:47:35Z) - Half-Space Feature Learning in Neural Networks [2.3249139042158853]
現在、ニューラルネットワークの特徴学習には2つの極端な視点がある。
どちらの解釈も、新しい観点からは正しいとは考えにくい。
私たちはこの代替解釈を使って、Deep Linearly Gated Network (DLGN)と呼ばれるモデルを動かす。
論文 参考訳(メタデータ) (2024-04-05T12:03:19Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Riemannian Multinomial Logistics Regression for SPD Neural Networks [60.11063972538648]
本稿では,Symmetric Positive Definite (SPD) 行列のための新しいタイプのディープニューラルネットワークを提案する。
我々のフレームワークは、既存のSPDネットワークで最も人気のあるLogEig分類器について、斬新な説明を提供する。
本手法の有効性は,レーダ認識,人行動認識,脳波分類(EEG)の3つの応用で実証された。
論文 参考訳(メタデータ) (2023-05-18T20:12:22Z) - Fully Hyperbolic Convolutional Neural Networks for Computer Vision [3.3964154468907486]
コンピュータビジョンタスク用に設計された完全双曲型畳み込みニューラルネットワーク(CNN)であるHCNNを紹介する。
ローレンツモデルに基づいて、畳み込み層の新規な定式化、バッチ正規化、多項ロジスティック回帰を提案する。
標準的なビジョンタスクの実験は、HCNNフレームワークをハイブリッドと完全に双曲的な設定の両方で有望な性能を示す。
論文 参考訳(メタデータ) (2023-03-28T12:20:52Z) - A singular Riemannian geometry approach to Deep Neural Networks II.
Reconstruction of 1-D equivalence classes [78.120734120667]
入力空間における出力多様体内の点の事前像を構築する。
我々は、n-次元実空間から(n-1)-次元実空間へのニューラルネットワークマップの場合の簡易性に焦点をあてる。
論文 参考訳(メタデータ) (2021-12-17T11:47:45Z) - Exploring the Common Principal Subspace of Deep Features in Neural
Networks [50.37178960258464]
我々は、同じデータセットでトレーニングされた異なるディープニューラルネットワーク(DNN)が、潜在空間において共通の主部分空間を共有することを発見した。
具体的には、DNNで学んだ深い機能の主部分空間を表すために、$mathcalP$-vectorを新たに設計する。
異なるアルゴリズム/アーキテクチャで訓練された2つのDNNの比較では、小さな角度(コサインが1.0ドルに近い)が見つかっている。
論文 参考訳(メタデータ) (2021-10-06T15:48:32Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Multi-Subspace Neural Network for Image Recognition [33.61205842747625]
画像分類タスクでは, 特徴抽出は常に大きな問題であり, クラス内変動により抽出器の設計が困難になる。
近年、ディープラーニングはデータから機能を自動的に学習することに多くの注意を払っている。
本研究では,畳み込みニューラルネットワーク(CNN)のキーコンポーネントをサブスペースの概念と組み合わせたマルチサブスペースニューラルネットワーク(MSNN)を提案する。
論文 参考訳(メタデータ) (2020-06-17T02:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。