論文の概要: Robust Watermarking on Gradient Boosting Decision Trees
- arxiv url: http://arxiv.org/abs/2511.09822v1
- Date: Fri, 14 Nov 2025 01:11:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-14 22:53:22.509763
- Title: Robust Watermarking on Gradient Boosting Decision Trees
- Title(参考訳): 勾配ブースティング決定木のロバスト透かし
- Authors: Jun Woo Chung, Yingjie Lao, Weijie Zhao,
- Abstract要約: GBDTモデルに適した最初の堅牢な透かしフレームワークを提示する。
モデル精度への影響を最小限に抑えつつ,透かしの堅牢性を確保しつつ,4つの埋め込み戦略を提案する。
- 参考スコア(独自算出の注目度): 17.6066195620505
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Gradient Boosting Decision Trees (GBDTs) are widely used in industry and academia for their high accuracy and efficiency, particularly on structured data. However, watermarking GBDT models remains underexplored compared to neural networks. In this work, we present the first robust watermarking framework tailored to GBDT models, utilizing in-place fine-tuning to embed imperceptible and resilient watermarks. We propose four embedding strategies, each designed to minimize impact on model accuracy while ensuring watermark robustness. Through experiments across diverse datasets, we demonstrate that our methods achieve high watermark embedding rates, low accuracy degradation, and strong resistance to post-deployment fine-tuning.
- Abstract(参考訳): グラディエントブースティング決定木(GBDT)は、特に構造化データにおいて、高い精度と効率のために産業や学術で広く使用されている。
しかし、GBDTモデルの透かしは、ニューラルネットワークと比較してまだ未定である。
本研究ではGBDTモデルに適合する最初の堅牢な透かしフレームワークについて述べる。
モデル精度への影響を最小限に抑えつつ,透かしの堅牢性を確保しつつ,4つの埋め込み戦略を提案する。
各種データセットを対象とした実験により,本手法は高い透かし埋め込み率,低い精度の劣化,および後処理の微調整に対する強い耐性を達成できることを実証した。
関連論文リスト
- Watermarking Degrades Alignment in Language Models: Analysis and Mitigation [8.866121740748447]
本稿では,Gumbel と KGW の2つの一般的な透かし手法が真理性,安全性,有用性にどのように影響するかを体系的に分析する。
本稿では,外部報酬モデルを用いてアライメントを復元する推論時間サンプリング手法を提案する。
論文 参考訳(メタデータ) (2025-06-04T21:29:07Z) - Detection Limits and Statistical Separability of Tree Ring Watermarks in Rectified Flow-based Text-to-Image Generation Models [0.0]
ツリーリング透かしはAI生成画像の認証において重要な技術である。
SD 2.1 と FLUX.1-dev モデルによる透かしの検出と分離性の評価と比較を行った。
論文 参考訳(メタデータ) (2025-04-04T18:24:23Z) - Theoretically Grounded Framework for LLM Watermarking: A Distribution-Adaptive Approach [53.32564762183639]
大規模言語モデル(LLM)の透かしのための新しい統一的理論フレームワークを導入する。
本研究の目的は,最悪の偽陽性率(FPR)の制御とテキスト品質の歪みを維持しつつ,検出性能を最大化することである。
モデル非依存と効率性に代えて代理モデルを利用する歪みのない分散適応型透かしアルゴリズム(DAWA)を提案する。
論文 参考訳(メタデータ) (2024-10-03T18:28:10Z) - Wide Flat Minimum Watermarking for Robust Ownership Verification of GANs [23.639074918667625]
ホワイトボックス攻撃に対するロバスト性を向上したGANのための新しいマルチビット・ボックスフリー透かし手法を提案する。
透かしは、GANトレーニング中に余分な透かし損失項を追加することで埋め込む。
その結果,透かしの存在が画像の品質に与える影響は無視できることがわかった。
論文 参考訳(メタデータ) (2023-10-25T18:38:10Z) - ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training [50.77001916246691]
本稿では,人間の直感的な評価を目的とした最初のDNN透かし手法であるClearMarkを紹介する。
ClearMarkは目に見える透かしを埋め込んで、厳格な値閾値なしで人間の意思決定を可能にする。
8,544ビットの透かし容量は、現存する最強の作品に匹敵する。
論文 参考訳(メタデータ) (2023-10-25T08:16:55Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
高性能なディープニューラルネットワークをトレーニングするには、大量のデータと計算リソースが必要である。
安全で堅牢なバックドア型透かし注入法を提案する。
我々は,透かし注入時のモデルパラメータのランダムな摂動を誘導し,一般的な透かし除去攻撃に対する防御を行う。
論文 参考訳(メタデータ) (2023-09-04T19:58:35Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-Distribution (OOD) 検出は、よく訓練された深層モデルから抽出された表現に基づいてOODデータを識別することを目的としている。
本稿では,透かしという一般的な手法を提案する。
我々は,元データの特徴に重畳される統一パターンを学習し,ウォーターマーキング後にモデルの検出能力が大きく向上する。
論文 参考訳(メタデータ) (2022-10-27T06:12:32Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
Deep Neural Network(DNN)の知的財産権(IP)は、代理モデルアタックによって簡単に盗まれる。
本稿では,新しい構造整合モデルウォーターマーキングアルゴリズムを設計した新しい透かし手法,すなわち構造整合性'を提案する。
論文 参考訳(メタデータ) (2021-08-05T04:27:15Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。