論文の概要: OutSafe-Bench: A Benchmark for Multimodal Offensive Content Detection in Large Language Models
- arxiv url: http://arxiv.org/abs/2511.10287v1
- Date: Fri, 14 Nov 2025 01:43:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-14 22:53:22.79776
- Title: OutSafe-Bench: A Benchmark for Multimodal Offensive Content Detection in Large Language Models
- Title(参考訳): OutSafe-Bench: 大規模言語モデルにおけるマルチモーダル攻撃コンテンツ検出ベンチマーク
- Authors: Yuping Yan, Yuhan Xie, Yuanshuai Li, Yingchao Yu, Lingjuan Lyu, Yaochu Jin,
- Abstract要約: マルチモーダル時代に設計された,最も包括的なコンテンツ安全性評価テストスイートであるOutSafe-Benchを紹介する。
OutSafe-Benchには、4つのモダリティにまたがる大規模なデータセットが含まれており、18,000以上のバイリンガル(中国語と英語)テキストプロンプト、4500のイメージ、450のオーディオクリップ、450のビデオが9つの重要なコンテンツリスクカテゴリで体系的に注釈付けされている。
このデータセットに加えて,多次元クロスリスクスコア(Multidimensional Cross Risk Score, MCRS)も導入した。
- 参考スコア(独自算出の注目度): 54.80460603255789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since Multimodal Large Language Models (MLLMs) are increasingly being integrated into everyday tools and intelligent agents, growing concerns have arisen regarding their possible output of unsafe contents, ranging from toxic language and biased imagery to privacy violations and harmful misinformation. Current safety benchmarks remain highly limited in both modality coverage and performance evaluations, often neglecting the extensive landscape of content safety. In this work, we introduce OutSafe-Bench, the first most comprehensive content safety evaluation test suite designed for the multimodal era. OutSafe-Bench includes a large-scale dataset that spans four modalities, featuring over 18,000 bilingual (Chinese and English) text prompts, 4,500 images, 450 audio clips and 450 videos, all systematically annotated across nine critical content risk categories. In addition to the dataset, we introduce a Multidimensional Cross Risk Score (MCRS), a novel metric designed to model and assess overlapping and correlated content risks across different categories. To ensure fair and robust evaluation, we propose FairScore, an explainable automated multi-reviewer weighted aggregation framework. FairScore selects top-performing models as adaptive juries, thereby mitigating biases from single-model judgments and enhancing overall evaluation reliability. Our evaluation of nine state-of-the-art MLLMs reveals persistent and substantial safety vulnerabilities, underscoring the pressing need for robust safeguards in MLLMs.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は日常のツールやインテリジェントエージェントに統合されつつあるため、有害な言語や偏見のある画像からプライバシー侵害、有害な誤報まで、安全でないコンテンツのアウトプットに関する懸念が高まっている。
現在の安全性ベンチマークは、モダリティカバレッジとパフォーマンス評価の両方において非常に制限されており、しばしばコンテンツ安全性の広範な状況を無視している。
本稿では,マルチモーダル時代のコンテンツ安全性評価テストスイートであるOutSafe-Benchを紹介する。
OutSafe-Benchには、4つのモダリティにまたがる大規模なデータセットが含まれており、18,000以上のバイリンガル(中国語と英語)テキストプロンプト、4500のイメージ、450のオーディオクリップ、450のビデオが9つの重要なコンテンツリスクカテゴリで体系的に注釈付けされている。
このデータセットに加えて,多次元クロスリスクスコア(Multidimensional Cross Risk Score, MCRS)も導入した。
公平かつロバストな評価を確保するため,FairScoreを提案する。
FairScoreは、アダプティブジャリーとしてトップパフォーマンスモデルを選択し、単一のモデル判断からバイアスを緩和し、全体的な評価信頼性を向上させる。
9つの最先端MLLMの評価結果から,MLLMの堅牢な安全対策の必要性が強調され,持続的かつ実質的な安全性上の脆弱性が明らかとなった。
関連論文リスト
- USB: A Comprehensive and Unified Safety Evaluation Benchmark for Multimodal Large Language Models [31.412080488801507]
Unified Safety Benchmarks (USB) はMLLMの安全性において最も包括的な評価ベンチマークの一つである。
我々のベンチマークでは、高品質なクエリ、広範囲なリスクカテゴリ、包括的なモーダルの組み合わせ、脆弱性と過度な評価の両方が特徴である。
論文 参考訳(メタデータ) (2025-05-26T08:39:14Z) - aiXamine: Simplified LLM Safety and Security [7.933485586826888]
安全とセキュリティのための総合的なブラックボックス評価プラットフォームであるaiXamineについて紹介する。
AiXamineは40以上のテスト(ベンチマーク)を、特定の安全性とセキュリティをターゲットとした8つの重要なサービスに統合する。
プラットフォームは、評価結果をモデル毎の1つの詳細なレポートに集約し、モデルパフォーマンス、テスト例、リッチな視覚化を提供する。
論文 参考訳(メタデータ) (2025-04-21T09:26:05Z) - Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs [56.440345471966666]
MLLM(Multimodal Large Language Models)は、テキストと画像の両方を通して対話を可能にすることで、従来の言語モデルの能力を拡大した。
MMSafeAwareは,安全シナリオ29のMLLMを評価するために設計された,初の総合的マルチモーダル安全意識ベンチマークである。
MMSafeAwareには安全でないサブセットと安全でないサブセットの両方が含まれており、安全でないコンテンツを正しく識別するモデルの評価と、有用性を阻害する過敏性を回避することができる。
論文 参考訳(メタデータ) (2025-02-16T16:12:40Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models [39.97454990633856]
本稿では,MLLMの多次元安全性評価スイートであるMLLMGuardを紹介する。
バイリンガル画像テキスト評価データセット、推論ユーティリティ、軽量評価器が含まれている。
13種類の先進モデルに対する評価結果は,MLLMが安全かつ責任を負うことができるまでには,まだかなりの道のりを歩んでいることを示唆している。
論文 参考訳(メタデータ) (2024-06-11T13:41:33Z) - MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models [51.19622266249408]
MultiTrustはMLLMの信頼性に関する最初の総合的で統一されたベンチマークである。
我々のベンチマークでは、マルチモーダルリスクとクロスモーダルインパクトの両方に対処する厳格な評価戦略を採用している。
21の近代MLLMによる大規模な実験は、これまで調査されなかった信頼性の問題とリスクを明らかにしている。
論文 参考訳(メタデータ) (2024-06-11T08:38:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。