論文の概要: Histology-informed tiling of whole tissue sections improves the interpretability and predictability of cancer relapse and genetic alterations
- arxiv url: http://arxiv.org/abs/2511.10432v1
- Date: Fri, 14 Nov 2025 01:51:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-14 22:53:22.866045
- Title: Histology-informed tiling of whole tissue sections improves the interpretability and predictability of cancer relapse and genetic alterations
- Title(参考訳): 組織全切片の組織学的インフォームドタイリングは、癌再発と遺伝子変異の解釈可能性および予測可能性を改善する
- Authors: Willem Bonnaffé, Yang Hu, Andrea Chatrian, Mengran Fan, Stefano Malacrino, Sandy Figiel, CRUK ICGC Prostate Group, Srinivasa R. Rao, Richard Colling, Richard J. Bryant, Freddie C. Hamdy, Dan J. Woodcock, Ian G. Mills, Clare Verrill, Jens Rittscher,
- Abstract要約: デジタル病理パイプラインは、しばしば組織アーキテクチャを無視したグリッドベースのタイリングに依存している。
意味的セグメンテーションを用いてスライド画像から腺を抽出する組織学的インフォームド・タイリング(HIT)を導入する。
760 WSIsから380,000個の腺を抽出し,MILモデルAUCを10%改良し,上皮間葉移行(EMT)およびMYCに関連する遺伝子のコピー数変動(CNVs)を検出した。
- 参考スコア(独自算出の注目度): 4.70518291890921
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Histopathologists establish cancer grade by assessing histological structures, such as glands in prostate cancer. Yet, digital pathology pipelines often rely on grid-based tiling that ignores tissue architecture. This introduces irrelevant information and limits interpretability. We introduce histology-informed tiling (HIT), which uses semantic segmentation to extract glands from whole slide images (WSIs) as biologically meaningful input patches for multiple-instance learning (MIL) and phenotyping. Trained on 137 samples from the ProMPT cohort, HIT achieved a gland-level Dice score of 0.83 +/- 0.17. By extracting 380,000 glands from 760 WSIs across ICGC-C and TCGA-PRAD cohorts, HIT improved MIL models AUCs by 10% for detecting copy number variation (CNVs) in genes related to epithelial-mesenchymal transitions (EMT) and MYC, and revealed 15 gland clusters, several of which were associated with cancer relapse, oncogenic mutations, and high Gleason. Therefore, HIT improved the accuracy and interpretability of MIL predictions, while streamlining computations by focussing on biologically meaningful structures during feature extraction.
- Abstract(参考訳): 病理学者は前立腺がんの腺などの組織学的構造を評価することでがんのグレードを確立する。
しかし、デジタル病理パイプラインは、しばしば組織アーキテクチャを無視したグリッドベースのタイリングに依存します。
これは無関係な情報を導入し、解釈可能性を制限する。
組織学的インフォームド・タイリング (HIT) を導入し, 意味的セグメンテーションを用いて, スライド画像全体(WSI)から腺を抽出し, 生物学的に意味のある入力パッチとして, マルチスタンス・ラーニング (MIL) と表現タイピングを行った。
プロMPTコホートから137サンプルを採取し,腺レベルのDiceスコア0.83+/-0.17を得た。
ICGC-CおよびTCGA-PRADコホートで760個のWSIから380,000個の腺を抽出し,MILモデルAUCを10%改良し,上皮間葉系移行(EMT)およびMYCに関連する遺伝子のコピー数変動(CNV)を検出した。
したがって、HITは、特徴抽出中に生物学的に意味のある構造に着目して計算を合理化しながら、MIL予測の精度と解釈性を改善した。
関連論文リスト
- PEaRL: Pathway-Enhanced Representation Learning for Gene and Pathway Expression Prediction from Histology [8.879502752288325]
本稿では PEaRL (Pathway Enhanced Representation Learning) について述べる。
3つのがんSTデータセット全体でPEaRLはSOTA法を一貫して上回り、遺伝子レベルでの発現予測と経路レベルでの表現予測の精度が向上した。
論文 参考訳(メタデータ) (2025-10-03T19:21:23Z) - Boosting Pathology Foundation Models via Few-shot Prompt-tuning for Rare Cancer Subtyping [80.92960114162746]
視覚言語病理基盤モデルの可能性を生かした新しいフレームワークPathPTを提案する。
PathPTは、WSIレベルの監視を、VLモデルのゼロショット機能を活用することで、きめ細かいタイルレベルのガイダンスに変換する。
以上の結果から,PathPTは一貫して優れた性能を示し,サブタイピング精度と癌領域の接地能力を著しく向上することが示された。
論文 参考訳(メタデータ) (2025-08-21T18:04:41Z) - FoundBioNet: A Foundation-Based Model for IDH Genotyping of Glioma from Multi-Parametric MRI [1.4249472316161877]
我々は,多パラメータMRIから非侵襲的にIDH変異を予測できるFoundBioNet(FoundBioNet)を提案する。
1705人のグリオーマ患者を6つの公開データセットから多施設で訓練し, 評価した。
我々のモデルは、EGD、TCGA、Ivy GAP、RHUH、UPennの独立したテストセットに対して90.58%、88.08%、65.41%、および80.31%のAUCを達成した。
論文 参考訳(メタデータ) (2025-08-09T00:08:10Z) - TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
そこで本研究では,乳房側葉構造をよりよく近似するために,マルチスケールのトポロジ構造を明示的に抽出する新しいトポロジカルアプローチを提案する。
VICTREファントム乳房データセットを用いてemphTopoTxRを実験的に検証した。
本研究の質的および定量的分析は,乳房組織における画像診断におけるトポロジカルな挙動を示唆するものである。
論文 参考訳(メタデータ) (2024-11-05T19:35:10Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - Finding Regions of Interest in Whole Slide Images Using Multiple Instance Learning [0.23301643766310368]
病理ラベリングは通常、タイルレベルではなくスライドレベルで行われるため、WSI(Whole Slide Images)はAIベース/AI経由の分析に対する特別な課題である。
本稿では,がんの表現型を正確に予測するために,弱教師付き多重インスタンス学習(MIL)手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T19:33:41Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H\&E stained images [42.771819949806655]
CIMIL-CRCは、事前学習した特徴抽出モデルと主成分分析(PCA)を効率よく組み合わせ、全てのパッチから情報を集約することで、MSI/MSS MIL問題を解決するフレームワークである。
我々は,TCGA-CRC-DXコホートを用いたモデル開発のための5倍のクロスバリデーション実験装置を用いて,曲線下平均面積(AUC)を用いてCIMIL-CRC法の評価を行った。
論文 参考訳(メタデータ) (2024-01-29T12:56:11Z) - Beyond attention: deriving biologically interpretable insights from
weakly-supervised multiple-instance learning models [2.639541396835675]
本稿では,高精細エンコーダによるタイルレベルのアテンションと予測スコアを組み合わせたPAWマップを提案する。
また, PAWマップと核分割マスクを統合することにより, 生物学的特徴のインスタンス化手法も導入する。
本手法により, 予後不良の予知を行う領域は, 腫瘍部位と同一位置にあることが判明した。
論文 参考訳(メタデータ) (2023-09-07T09:44:35Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
病理学者は、ガラススライド上の針生検の組織を調べて前立腺がんを診断し、診断する。
がんの重症度と転移リスクは、前立腺の組織と形態に基づくスコアであるGleason gradeによって決定される。
本稿では,病理学者のtextitmodus operandi に従って,個々の腺のマルチスケールパッチを分離・分類する自動ワークフローを提案する。
論文 参考訳(メタデータ) (2022-09-27T14:08:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。