論文の概要: Deep Learning for Short-Term Precipitation Prediction in Four Major Indian Cities: A ConvLSTM Approach with Explainable AI
- arxiv url: http://arxiv.org/abs/2511.11152v1
- Date: Fri, 14 Nov 2025 10:30:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-17 22:42:18.540497
- Title: Deep Learning for Short-Term Precipitation Prediction in Four Major Indian Cities: A ConvLSTM Approach with Explainable AI
- Title(参考訳): インドの4大都市における短期降水予測のためのディープラーニング:説明可能なAIを用いたConvLSTMアプローチ
- Authors: Tanmay Ghosh, Shaurabh Anand, Rakesh Gomaji Nannewar, Nithin Nagaraj,
- Abstract要約: インドの主要都市4都市において,短期降水予測のための解釈可能なディープラーニングフレームワークを開発した。
根平均二乗誤差(RMSE)は0.21mm/日(ベンガル)、0.52mm/日(ムンバイ)、0.48mm/日(デルヒ)、1.80mm/日(コルカタ)である。
この研究は、様々な都市環境における降水パターンに対する正確な予測と透明な洞察を提供するための説明可能なAI(xAI)の方法を示す。
- 参考スコア(独自算出の注目度): 0.6524460254566904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models for precipitation forecasting often function as black boxes, limiting their adoption in real-world weather prediction. To enhance transparency while maintaining accuracy, we developed an interpretable deep learning framework for short-term precipitation prediction in four major Indian cities: Bengaluru, Mumbai, Delhi, and Kolkata, spanning diverse climate zones. We implemented a hybrid Time-Distributed CNN-ConvLSTM (Convolutional Neural Network-Long Short-Term Memory) architecture, trained on multi-decadal ERA5 reanalysis data. The architecture was optimized for each city with a different number of convolutional filters: Bengaluru (32), Mumbai and Delhi (64), and Kolkata (128). The models achieved root mean square error (RMSE) values of 0.21 mm/day (Bengaluru), 0.52 mm/day (Mumbai), 0.48 mm/day (Delhi), and 1.80 mm/day (Kolkata). Through interpretability analysis using permutation importance, Gradient-weighted Class Activation Mapping (Grad-CAM), temporal occlusion, and counterfactual perturbation, we identified distinct patterns in the model's behavior. The model relied on city-specific variables, with prediction horizons ranging from one day for Bengaluru to five days for Kolkata. This study demonstrates how explainable AI (xAI) can provide accurate forecasts and transparent insights into precipitation patterns in diverse urban environments.
- Abstract(参考訳): 降水予測のためのディープラーニングモデルは、しばしばブラックボックスとして機能し、実際の天気予報における導入を制限する。
そこで我々は,ベンガル,ムンバイ,デリー,コルカタの4大都市において,短期降水予測のための解釈可能なディープラーニングフレームワークを開発した。
我々は,マルチdecadal ERA5リアナリシスデータに基づいて,時間分散CNN-ConvLSTM(Convolutional Neural Network-Long Short-Term Memory)アーキテクチャを実装した。
建築は、ベンガル (32)、ムンバイ (64)、デリー (64)、コルカタ (128) の様々なコンボリューションフィルターで、各都市に最適化された。
根平均二乗誤差(RMSE)は0.21mm/日(ベンガル)、0.52mm/日(ムンバイ)、0.48mm/日(デリー)、そして1.80mm/日(コルカタ)であった。
順列重み付きクラス活性化マッピング (Grad-CAM) , 時間的閉塞, および反事実摂動を用いた解釈可能性分析により, モデル行動の異なるパターンを同定した。
このモデルは都市固有の変数に依存しており、予測地平線はベンガルでは1日、コルカタでは5日であった。
この研究は、様々な都市環境における降水パターンに対する正確な予測と透明な洞察を提供するための説明可能なAI(xAI)の方法を示す。
関連論文リスト
- A Space-Time Transformer for Precipitation Forecasting [38.87144329787491]
SaTformerは、衛星の放射光から極端な降水量を予測するビデオトランスフォーマーだ。
我々は降水量の回帰を分類問題に再構成し、ラベルの不均衡に対処するためにクラス重み付き損失を用いる。
私たちのモデルは、NeurIPS Weather4Cast 2025 Cumulative Rainfall Challengeで1位を獲得しました。
論文 参考訳(メタデータ) (2025-11-14T09:10:31Z) - FourCastNet 3: A geometric approach to probabilistic machine-learning weather forecasting at scale [91.84761739154366]
FourCastNet 3は、確率的アンサンブル予測にスケーラブルで幾何学的な機械学習(ML)アプローチを実装することで、グローバルな気象モデリングを推進している。
FourCastNet 3は、従来のアンサンブルモデルを上回る予測精度を提供し、最良の拡散ベースのメソッドに匹敵する。
その計算効率、中距離確率的スキル、スペクトルの忠実度、およびサブシーズンタイムスケールでのロールアウト安定性は、大規模なアンサンブル予測を通じて気象予知と早期警報システムを改善するための強力な候補となる。
論文 参考訳(メタデータ) (2025-07-16T11:22:18Z) - Enhanced Precision in Rainfall Forecasting for Mumbai: Utilizing Physics Informed ConvLSTM2D Models for Finer Spatial and Temporal Resolution [0.0]
本研究では,降雨予測精度の向上を目的とした深層学習空間モデルを提案する。
この仮説を検証するため,インド・ムンバイに先立つ降水量6hrと12hrを予測するために,ConvLSTM2Dモデルを導入した。
論文 参考訳(メタデータ) (2024-04-01T13:56:12Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh [3.2785715577154595]
110kmのメッシュ上で最大1年間のリードタイムで,3時間分解能を持つ7つの大気変数の予測を行うため,同種の深層学習天気予報モデルを提案する。
Pangu-WeatherやGraphCastのような最先端の機械学習(SOTA)天気予報モデルと比較して、我々のDLWP-HPXモデルは粗い分解能と予測変数がはるかに少ない。
論文 参考訳(メタデータ) (2023-09-11T16:25:48Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - A CNN based method for Sub-pixel Urban Land Cover Classification using
Landsat-5 TM and Resourcesat-1 LISS-IV Imagery [0.0]
本稿では,Landsat-5 TMとResourcesat-1 LISS-IVの時間重なりを利用したサブピクセル分類法を提案する。
畳み込みニューラルネットワークを用いて30m Landsat-5 TMデータから土地被覆マップを推定する。
論文 参考訳(メタデータ) (2021-12-16T12:48:37Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。