論文の概要: A Meta-Heuristic Load Balancer for Cloud Computing Systems
- arxiv url: http://arxiv.org/abs/2511.11721v2
- Date: Tue, 18 Nov 2025 02:24:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-19 13:59:16.692648
- Title: A Meta-Heuristic Load Balancer for Cloud Computing Systems
- Title(参考訳): クラウドコンピューティングのためのメタヒューリスティックロードバランサ
- Authors: Leszek Sliwko, Vladimir Getov,
- Abstract要約: 試作したメタヒューリスティック負荷バランサを実演し,実験結果について考察した。
また,他のメタヒューリスティックアルゴリズムの出力によって個体群がシードされる新しい遺伝的アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a strategy to allocate services on a Cloud system without overloading nodes and maintaining the system stability with minimum cost. We specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. A prototype meta-heuristic load balancer is demonstrated and experimental results are presented and discussed. We also propose a novel genetic algorithm, where population is seeded with the outputs of other meta-heuristic algorithms.
- Abstract(参考訳): 本稿では,ノードをオーバーロードすることなく,システム安定性を最小限のコストで維持し,クラウドシステムにサービスを割り当てる戦略を提案する。
サービス移行コストの考慮だけでなく,複数のタイプのリソースを含む,クラウドリソース利用の抽象モデルを定義します。
試作したメタヒューリスティック負荷バランサを実演し,実験結果について考察した。
また,他のメタヒューリスティックアルゴリズムの出力によって個体群がシードされる新しい遺伝的アルゴリズムを提案する。
関連論文リスト
- Intelligent Load Balancing in Cloud Computer Systems [0.0]
この研究は、クラウドノードをオーバーロードすることなくタスクを動的に割り当てる戦略を設計することであった。
このプロジェクトはウェストミンスター大学 HPC クラスタ上で広範な実験が行われた。
論文 参考訳(メタデータ) (2025-09-22T19:39:08Z) - Generative Diffusion Models for Resource Allocation in Wireless Networks [74.84410305593006]
我々は、専門家を模倣し、最適な分布から新しいサンプルを生成するポリシーを訓練する。
生成したサンプルの逐次実行により,ほぼ最適性能を実現する。
電力制御のケーススタディにおいて数値的な結果を示す。
論文 参考訳(メタデータ) (2025-04-28T21:44:31Z) - Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
条件監視(CM)は機械学習(ML)モデルを使用して異常および異常な条件を識別する。
本研究では,MLベースのUAV CMフレームワークにおけるネットワークリソースの最適化について検討する。
次元削減技術を活用することで、ネットワークリソース消費の99.9%が削減される。
論文 参考訳(メタデータ) (2025-02-21T14:36:12Z) - CILP: Co-simulation based Imitation Learner for Dynamic Resource
Provisioning in Cloud Computing Environments [13.864161788250856]
レイテンシクリティカルなタスクの主な課題は、積極的にプロビジョニングする将来のワークロード要求を予測することだ。
既存のAIベースのソリューションは、プロビジョニングのオーバーヘッド、異種VMコスト、クラウドシステムの品質(QoS)など、すべての重要な側面を公平に考慮しない傾向があります。
予測と最適化の2つのサブプロブレムとしてVMプロビジョニング問題を定式化するCILPと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-11T09:15:34Z) - Graph-PHPA: Graph-based Proactive Horizontal Pod Autoscaling for
Microservices using LSTM-GNN [4.4345763263216895]
Graph-PHPAは、クラウドリソースを割り当てるためのグラフベースのプロアクティブ自動スケーリング戦略である。
本稿では,ルールベースのリソース割り当て方式をベースラインとして,Graph-PHPAの有効性を実証する。
論文 参考訳(メタデータ) (2022-09-06T14:57:53Z) - PECCO: A Profit and Cost-oriented Computation Offloading Scheme in
Edge-Cloud Environment with Improved Moth-flame Optimisation [22.673319784715172]
エッジクラウド計算のオフロードは、クラウドセンタの負担を軽減するための、有望なソリューションである。
そこで本研究では,元のMoth-flame Optimiserの欠陥に対処する改良型Moth-flame optimiser PECCO-MFIを提案する。
論文 参考訳(メタデータ) (2022-08-09T23:26:42Z) - Tailored Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud
System [54.588242387136376]
エッジクラウドシステムのための学習ベースのスケジューリングフレームワークkaisを紹介する。
まず,分散した要求ディスパッチに対応するために,協調型マルチエージェントアクタ-クリティックアルゴリズムを設計する。
次に,多種多様なシステムスケールと構造について,グラフニューラルネットワークを用いてシステム状態情報を埋め込む。
第3に、リクエストディスパッチとサービスオーケストレーションを調和させる2段階のスケジューリングメカニズムを採用します。
論文 参考訳(メタデータ) (2021-01-17T03:45:25Z) - Coordinated Online Learning for Multi-Agent Systems with Coupled
Constraints and Perturbed Utility Observations [91.02019381927236]
本研究では, 資源制約を満たすため, エージェントを安定な集団状態へ誘導する新しい手法を提案する。
提案手法は,ゲームラグランジアンの拡張によるリソース負荷に基づく分散リソース価格設定手法である。
論文 参考訳(メタデータ) (2020-10-21T10:11:17Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。