論文の概要: Self-Supervised Visual Prompting for Cross-Domain Road Damage Detection
- arxiv url: http://arxiv.org/abs/2511.12410v1
- Date: Sun, 16 Nov 2025 01:28:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:24.024886
- Title: Self-Supervised Visual Prompting for Cross-Domain Road Damage Detection
- Title(参考訳): 道路損傷検出のための自己監督型視覚プロンプト
- Authors: Xi Xiao, Zhuxuanzi Wang, Mingqiao Mo, Chen Liu, Chenrui Ma, Yanshu Li, Smita Krishnaswamy, Xiao Wang, Tianyang Wang,
- Abstract要約: 私たちのフレームワークは、ラベルなしでターゲットドメインを視覚的に調査する、自己管理型のフレームワークです。
強い監督、自己監督、適応のベースラインを 常に上回っています
これらの結果は、スケーラブルで適応的な視覚検査システムを構築するための実践的な方向性として、自己監督的プロンプトを強調している。
- 参考スコア(独自算出の注目度): 21.137567686181438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deployment of automated pavement defect detection is often hindered by poor cross-domain generalization. Supervised detectors achieve strong in-domain accuracy but require costly re-annotation for new environments, while standard self-supervised methods capture generic features and remain vulnerable to domain shift. We propose \ours, a self-supervised framework that \emph{visually probes} target domains without labels. \ours introduces a Self-supervised Prompt Enhancement Module (SPEM), which derives defect-aware prompts from unlabeled target data to guide a frozen ViT backbone, and a Domain-Aware Prompt Alignment (DAPA) objective, which aligns prompt-conditioned source and target representations. Experiments on four challenging benchmarks show that \ours consistently outperforms strong supervised, self-supervised, and adaptation baselines, achieving robust zero-shot transfer, improved resilience to domain variations, and high data efficiency in few-shot adaptation. These results highlight self-supervised prompting as a practical direction for building scalable and adaptive visual inspection systems. Source code is publicly available: https://github.com/xixiaouab/PROBE/tree/main
- Abstract(参考訳): 自動舗装欠陥検出の展開は、しばしばドメイン間の一般化の貧弱さによって妨げられる。
監視された検出器はドメイン内の精度は高いが、新しい環境にコストがかかる。
本稿では,ラベルを使わずに対象ドメインを探索する自己教師型フレームワークであるShaoursを提案する。
これは、凍結したViTバックボーンをガイドするために、ラベルなしのターゲットデータから欠陥対応のプロンプトを導出するセルフ教師付きプロンプト拡張モジュール(SPEM)と、プロンプト条件のソースとターゲット表現を調整するドメイン対応プロンプトアライメント(DAPA)の目的を導入する。
4つの挑戦的なベンチマークの実験では、‘ours’は強い教師付き、自己教師付き、適応ベースラインを一貫して上回り、堅牢なゼロショット転送を実現し、ドメインの変動に対するレジリエンスを改善し、少数ショット適応における高いデータ効率を実現している。
これらの結果は、スケーラブルで適応的な視覚検査システムを構築するための実践的な方向性として、自己監督的プロンプトを強調している。
ソースコードが公開されている。 https://github.com/xiaouab/PROBE/tree/main
関連論文リスト
- VFM-Guided Semi-Supervised Detection Transformer under Source-Free Constraints for Remote Sensing Object Detection [9.029534000674388]
VG-DETRは、Vision Foundation Model(VFM)を「フリーランチ」方法でトレーニングパイプラインに統合する。
擬似ラベルの信頼性を評価するために,VFMのセマンティックな事前情報を利用した擬似ラベルマイニング手法を提案する。
さらに,デュアルレベルのVFM誘導アライメント手法を提案し,インスタンスレベルと画像レベルでのVFM埋め込みと検出器特性を一致させる。
論文 参考訳(メタデータ) (2025-08-15T02:35:56Z) - Boosting Domain Generalized and Adaptive Detection with Diffusion Models: Fitness, Generalization, and Transferability [0.0]
ディテクタは、トレーニングとテストデータのドメインギャップによって、しばしばパフォーマンス低下に悩まされる。
近年,領域一般化(DG)や適応(DA)タスクに応用された拡散モデルが研究されている。
単一段階拡散過程から中間的特徴を抽出することにより,これらの問題に対処することを提案する。
論文 参考訳(メタデータ) (2025-06-26T06:42:23Z) - DATR: Unsupervised Domain Adaptive Detection Transformer with Dataset-Level Adaptation and Prototypical Alignment [7.768332621617199]
我々は、オブジェクト検出の教師なし領域適応のために、ドメイン適応検出TRansformer(DATR)と呼ばれる強力なDETRベースの検出器を導入する。
提案するDATRは,教師モデルによって生成された擬似ラベルを用いて,平均教師に基づく自己学習フレームワークを組み込んで,ドメインバイアスをさらに緩和する。
複数のドメイン適応シナリオにおいて,提案したDATRの性能と一般化性を示す実験を行った。
論文 参考訳(メタデータ) (2024-05-20T03:48:45Z) - DomainInv: Domain Invariant Fine Tuning and Adversarial Label Correction
For QA Domain Adaptation [27.661609140918916]
既存の質問回答システム(QA)は、目に見えない領域やドメイン外分布からの質問に答える能力によって制限される。
最も重要なことは、既存のQAドメイン適応手法は、合成データを生成するか、ターゲットのドメインデータに擬似ラベルを付けたものである。
本稿では,未ラベル対象領域に対する教師なし領域適応を,ソースドメインの監督を引き続き用いながら,ソースドメイン近傍のターゲット表現を転送することで提案する。
論文 参考訳(メタデータ) (2023-05-04T18:13:17Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
自動運転車はエンドユーザー環境に一般化し、確実に動作させなければならない。
潜在的な解決策の1つは、エンドユーザの環境から収集されたラベルのないデータを活用することである。
適応過程を監督する信頼性のある信号はターゲット領域に存在しない。
この単純な仮定は、ターゲット領域上の3次元物体検出器の反復的自己学習を可能にする強力な信号を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-27T15:07:55Z) - Towards Online Domain Adaptive Object Detection [79.89082006155135]
既存のオブジェクト検出モデルは、トレーニングデータとテストデータの両方が同じソースドメインからサンプリングされていると仮定します。
オンライン設定における対象領域の一般化を適応・改善する新しい統合適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-11T17:47:22Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z) - Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining
and Consistency [93.89773386634717]
ビジュアルドメイン適応は、異なるソースドメインで利用可能なラベルを使用して、ターゲットのビジュアルドメインからイメージを分類する学習を含む。
いくつかの目標ラベルが存在する場合、(回転予測による)自己スーパービジョンや整合正則化といった単純な手法が、適切な目標分類器を学習するための対角アライメントなしで有効であることを示す。
我々の事前学習と一貫性(PAC)アプローチは、この半教師付きドメイン適応タスクにおいて、複数のデータセットにまたがる複数の対向的なドメインアライメント手法を超越して、技術精度を達成することができる。
論文 参考訳(メタデータ) (2021-01-29T18:40:17Z) - A Free Lunch for Unsupervised Domain Adaptive Object Detection without
Source Data [69.091485888121]
教師なしドメイン適応(unsupervised domain adaptation) ソースとターゲットのドメインデータは自由に利用でき、通常、ドメイン間のギャップを減らすために一緒に訓練される。
ノイズの多いラベルで学習する問題にモデル化することで,ソースデータのないドメイン適応オブジェクト検出(SFOD)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-10T01:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。