論文の概要: Backdoor Attacks on Open Vocabulary Object Detectors via Multi-Modal Prompt Tuning
- arxiv url: http://arxiv.org/abs/2511.12735v1
- Date: Sun, 16 Nov 2025 19:05:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:24.507134
- Title: Backdoor Attacks on Open Vocabulary Object Detectors via Multi-Modal Prompt Tuning
- Title(参考訳): マルチモーダルプロンプトチューニングによるオープン語彙オブジェクト検出器のバックドア攻撃
- Authors: Ankita Raj, Chetan Arora,
- Abstract要約: オープン語彙オブジェクト検出器(OVOD)は、視覚と言語を統一し、テキストプロンプトに基づいて任意のオブジェクトカテゴリを検出する。
我々は,OVODに対するバックドアアタックの最初の研究を行い,即時チューニングによって導入された新たなアタックサーフェスを明らかにする。
- 参考スコア(独自算出の注目度): 5.0734761482919115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-vocabulary object detectors (OVODs) unify vision and language to detect arbitrary object categories based on text prompts, enabling strong zero-shot generalization to novel concepts. As these models gain traction in high-stakes applications such as robotics, autonomous driving, and surveillance, understanding their security risks becomes crucial. In this work, we conduct the first study of backdoor attacks on OVODs and reveal a new attack surface introduced by prompt tuning. We propose TrAP (Trigger-Aware Prompt tuning), a multi-modal backdoor injection strategy that jointly optimizes prompt parameters in both image and text modalities along with visual triggers. TrAP enables the attacker to implant malicious behavior using lightweight, learnable prompt tokens without retraining the base model weights, thus preserving generalization while embedding a hidden backdoor. We adopt a curriculum-based training strategy that progressively shrinks the trigger size, enabling effective backdoor activation using small trigger patches at inference. Experiments across multiple datasets show that TrAP achieves high attack success rates for both object misclassification and object disappearance attacks, while also improving clean image performance on downstream datasets compared to the zero-shot setting.
- Abstract(参考訳): オープンボキャブラリオブジェクト検出器(OVOD)は、視覚と言語を統一し、テキストプロンプトに基づいて任意のオブジェクトカテゴリを検出する。
これらのモデルがロボット工学、自律運転、監視といった高度な応用において勢いを増すにつれて、彼らのセキュリティリスクを理解することが重要である。
本研究では,OVODに対するバックドアアタックの最初の研究を行い,即時チューニングによって導入された新たなアタックサーフェスを明らかにする。
本稿では,画像とテキストの両モードのプロンプトパラメータと視覚的トリガを協調的に最適化するマルチモーダルバックドアインジェクション戦略であるTrAP(Trigger-Aware Prompt tuning)を提案する。
TrAPによって攻撃者は、ベースモデルの重みをトレーニングすることなく、軽量で学習可能なプロンプトトークンを使用して悪意ある振る舞いを埋め込むことができ、隠れたバックドアを埋め込んだまま一般化を維持することができる。
我々は、段階的にトリガーサイズを縮小し、推論時に小さなトリガーパッチを使用して効果的なバックドアアクティベーションを可能にするカリキュラムベースのトレーニング戦略を採用する。
複数のデータセットを対象とした実験では、TrAPはオブジェクトの誤分類とオブジェクトの消失攻撃の両方に対して高い攻撃成功率を達成すると同時に、ゼロショット設定と比較して下流データセット上でのクリーンな画像パフォーマンスも向上している。
関連論文リスト
- Visual Backdoor Attacks on MLLM Embodied Decision Making via Contrastive Trigger Learning [89.1856483797116]
MLLMをベースとした組込みエージェントに視覚的バックドアを注入する最初のフレームワークであるBEATを紹介する。
テキストトリガーとは異なり、オブジェクトトリガーは視点や照明の幅が広いため、確実に移植することは困難である。
BEATは攻撃の成功率を最大80%まで達成し、強い良識のあるタスクパフォーマンスを維持します。
論文 参考訳(メタデータ) (2025-10-31T16:50:49Z) - Robust Anti-Backdoor Instruction Tuning in LVLMs [53.766434746801366]
大規模視覚言語モデル(LVLM)のための軽量で認証に依存しない防御フレームワークについて紹介する。
私たちのフレームワークは、命令チューニングの下で、アダプタモジュールとテキスト埋め込み層のみを微調整します。
Flickr30kとMSCOCOに対する7つの攻撃に対する実験は、我々の攻撃の成功率をほぼゼロに低下させることを示した。
論文 参考訳(メタデータ) (2025-06-04T01:23:35Z) - Proactive Adversarial Defense: Harnessing Prompt Tuning in Vision-Language Models to Detect Unseen Backdoored Images [0.0]
バックドア攻撃は、隠れたトリガーを入力に埋め込むことで重大な脅威となり、モデルがそれらをターゲットラベルに誤って分類する。
トレーニングと推論の両方において、未確認のバックドア画像を検出するための画期的な手法を提案する。
われわれのアプローチは、学習可能なテキストプロンプトを訓練し、クリーンな画像と隠れたバックドアトリガーを区別する。
論文 参考訳(メタデータ) (2024-12-11T19:54:14Z) - Twin Trigger Generative Networks for Backdoor Attacks against Object Detection [14.578800906364414]
オブジェクト検出器は、現実世界のアプリケーションで広く使われているが、バックドア攻撃に弱い。
バックドア攻撃に関するほとんどの研究は画像分類に焦点を合わせており、物体検出について限定的な研究がなされている。
本研究では,トレーニング中のモデルにバックドアを埋め込むための目に見えないトリガと,推論中の安定したアクティベーションのための目に見えるトリガを生成する新しいツイントリガ生成ネットワークを提案する。
論文 参考訳(メタデータ) (2024-11-23T03:46:45Z) - VL-Trojan: Multimodal Instruction Backdoor Attacks against
Autoregressive Visual Language Models [65.23688155159398]
VLM(Autoregressive Visual Language Models)は、マルチモーダルなコンテキストにおいて、驚くべき数ショットの学習機能を示す。
近年,マルチモーダル・インストラクション・チューニングが提案されている。
敵は、指示や画像に埋め込まれたトリガーで有毒なサンプルを注入することで、バックドアを埋め込むことができる。
本稿では,マルチモーダルなバックドア攻撃,すなわちVL-Trojanを提案する。
論文 参考訳(メタデータ) (2024-02-21T14:54:30Z) - Pre-trained Trojan Attacks for Visual Recognition [106.13792185398863]
PVM(Pre-trained Vision Model)は、下流タスクを微調整する際、例外的なパフォーマンスのため、主要なコンポーネントとなっている。
本稿では,PVMにバックドアを埋め込んだトロイの木馬攻撃を提案する。
バックドア攻撃の成功において、クロスタスクアクティベーションとショートカット接続がもたらす課題を強調します。
論文 参考訳(メタデータ) (2023-12-23T05:51:40Z) - Invisible Backdoor Attack with Dynamic Triggers against Person
Re-identification [71.80885227961015]
個人再識別(ReID)は、広範囲の現実世界のアプリケーションで急速に進展しているが、敵攻撃の重大なリスクも生じている。
動的トリガー・インビジブル・バックドア・アタック(DT-IBA)と呼ばれる,ReIDに対する新たなバックドア・アタックを提案する。
本研究は,提案したベンチマークデータセットに対する攻撃の有効性と盗聴性を広範囲に検証し,攻撃に対する防御手法の有効性を評価する。
論文 参考訳(メタデータ) (2022-11-20T10:08:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。