論文の概要: An Evaluation of Representation Learning Methods in Particle Physics Foundation Models
- arxiv url: http://arxiv.org/abs/2511.12829v1
- Date: Sun, 16 Nov 2025 23:23:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:24.565085
- Title: An Evaluation of Representation Learning Methods in Particle Physics Foundation Models
- Title(参考訳): 素粒子物理基礎モデルにおける表現学習手法の評価
- Authors: Michael Chen, Raghav Kansal, Abhijith Gandrakota, Zichun Hao, Jennifer Ngadiuba, Maria Spiropulu,
- Abstract要約: 本研究は, 標準前処理, マッチングサンプリング, ジェット分類データセット上での一貫した評価プロトコルを備えた共用変圧器を用いたパーティクルクラウドエンコーダを用いた。
コントラスト(教師付き・自己監督型)、マスク付き粒子モデル、生成的再構成目標を共通の訓練体制下で比較した。
- 参考スコア(独自算出の注目度): 1.8887501879766362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a systematic evaluation of representation learning objectives for particle physics within a unified framework. Our study employs a shared transformer-based particle-cloud encoder with standardized preprocessing, matched sampling, and a consistent evaluation protocol on a jet classification dataset. We compare contrastive (supervised and self-supervised), masked particle modeling, and generative reconstruction objectives under a common training regimen. In addition, we introduce targeted supervised architectural modifications that achieve state-of-the-art performance on benchmark evaluations. This controlled comparison isolates the contributions of the learning objective, highlights their respective strengths and limitations, and provides reproducible baselines. We position this work as a reference point for the future development of foundation models in particle physics, enabling more transparent and robust progress across the community.
- Abstract(参考訳): 本稿では,粒子物理学における表現学習目標の体系的評価について述べる。
本研究は, 標準前処理, 整合サンプリング, ジェット分類データセット上での一貫した評価プロトコルを備えた共用変圧器を用いたパーティクルクラウドエンコーダを用いた。
コントラスト(教師付き・自己監督型)、マスク付き粒子モデル、生成的再構成目標を共通の訓練体制下で比較した。
さらに、ベンチマーク評価における最先端性能を実現するための教師付きアーキテクチャ修正も導入する。
この制御された比較は、学習目標の貢献を分離し、それぞれの強みと限界を強調し、再現可能なベースラインを提供する。
我々は、この研究を、粒子物理学における基礎モデルの今後の発展の基準点として位置づけ、コミュニティ全体でより透明で堅牢な進展を可能にする。
関連論文リスト
- Is Tokenization Needed for Masked Particle Modelling? [8.79008927474707]
Masked Particle Modeling (MPM) は、無順序集合の表現表現を構築するための自己教師付き学習スキームである。
実装における非効率に対処し、より強力なデコーダを組み込むことにより、MPMを改善する。
これらの新しい手法は、ジェットの基礎モデルのための新しいテストベッドにおいて、オリジナルのMPMからのトークン化学習目標よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-09-19T09:12:29Z) - Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - GEO-Bench: Toward Foundation Models for Earth Monitoring [139.77907168809085]
6つの分類と6つのセグメンテーションタスクからなるベンチマークを提案する。
このベンチマークは、さまざまな地球観測タスクの進行の原動力となる。
論文 参考訳(メタデータ) (2023-06-06T16:16:05Z) - Rethinking Self-Supervision Objectives for Generalizable Coherence
Modeling [8.329870357145927]
機械生成テキストのコヒーレンス評価は、検討すべきコヒーレンスモデルの主要な応用の1つである。
タスク全体にわたってうまく一般化するモデルをもたらす訓練データと自己超越目標について検討する。
本研究では, 負サンプルの密度の増加が基本モデルを改善することを実証的に示し, 大域的負のキューを用いることで, 強負のサンプルを訓練しながらモデルをさらに改善・安定化する。
論文 参考訳(メタデータ) (2021-10-14T07:44:14Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Learning by Distillation: A Self-Supervised Learning Framework for
Optical Flow Estimation [71.76008290101214]
DistillFlowは光の流れを学ぶための知識蒸留手法である。
KITTIとSintelの両方のデータセット上で、最先端の教師なし学習性能を実現する。
我々のモデルは、KITTI 2015ベンチマークにおけるすべての単分子的手法の中で、第1位にランクされ、Sintel Finalベンチマークで発表されたすべてのメソッドよりも優れています。
論文 参考訳(メタデータ) (2021-06-08T09:13:34Z) - Improving Learning Effectiveness For Object Detection and Classification
in Cluttered Backgrounds [6.729108277517129]
本稿では,異種乱雑な背景の学習データセットを自律的に生成するフレームワークを開発する。
提案するフレームワークの学習効率は,複雑で異種な環境で改善されるべきである。
提案フレームワークの性能を実証実験により検討し,COCOデータセットを用いてトレーニングしたモデルと比較した。
論文 参考訳(メタデータ) (2020-02-27T22:28:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。