論文の概要: Improving Learning Effectiveness For Object Detection and Classification
in Cluttered Backgrounds
- arxiv url: http://arxiv.org/abs/2002.12467v1
- Date: Thu, 27 Feb 2020 22:28:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 08:33:38.495445
- Title: Improving Learning Effectiveness For Object Detection and Classification
in Cluttered Backgrounds
- Title(参考訳): クラッタ背景の物体検出・分類における学習効果の改善
- Authors: Vinorth Varatharasan, Hyo-Sang Shin, Antonios Tsourdos, Nick Colosimo
- Abstract要約: 本稿では,異種乱雑な背景の学習データセットを自律的に生成するフレームワークを開発する。
提案するフレームワークの学習効率は,複雑で異種な環境で改善されるべきである。
提案フレームワークの性能を実証実験により検討し,COCOデータセットを用いてトレーニングしたモデルと比較した。
- 参考スコア(独自算出の注目度): 6.729108277517129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Usually, Neural Networks models are trained with a large dataset of images in
homogeneous backgrounds. The issue is that the performance of the network
models trained could be significantly degraded in a complex and heterogeneous
environment. To mitigate the issue, this paper develops a framework that
permits to autonomously generate a training dataset in heterogeneous cluttered
backgrounds. It is clear that the learning effectiveness of the proposed
framework should be improved in complex and heterogeneous environments,
compared with the ones with the typical dataset. In our framework, a
state-of-the-art image segmentation technique called DeepLab is used to extract
objects of interest from a picture and Chroma-key technique is then used to
merge the extracted objects of interest into specific heterogeneous
backgrounds. The performance of the proposed framework is investigated through
empirical tests and compared with that of the model trained with the COCO
dataset. The results show that the proposed framework outperforms the model
compared. This implies that the learning effectiveness of the framework
developed is superior to the models with the typical dataset.
- Abstract(参考訳): 通常、ニューラルネットワークモデルは、均質な背景にある画像の大きなデータセットで訓練される。
問題は、訓練されたネットワークモデルの性能が複雑で異質な環境で著しく劣化することである。
この問題を軽減するため,異種乱雑な背景のトレーニングデータセットを自律的に生成するフレームワークを開発した。
提案するフレームワークの学習効率は,典型的なデータセットと比較すると,複雑で異種な環境で改善されるべきである。
このフレームワークでは、DeepLabと呼ばれる最先端の画像セグメンテーション技術を用いて、画像から興味対象を抽出し、クロマキー技術を用いて、抽出した関心対象を特定の異種背景にマージする。
提案フレームワークの性能を実証実験により検討し,COCOデータセットを用いてトレーニングしたモデルと比較した。
その結果,提案フレームワークはモデルよりも優れていた。
これは、フレームワークの学習効率が典型的なデータセットを持つモデルよりも優れていることを意味する。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEnは'matching'にインスパイアされている。
一致したデータセットによるトレーニングは、データ分布内に留まりながら、興味のある性質の勾配を近似することを示す。
論文 参考訳(メタデータ) (2024-05-28T11:30:19Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
拡散モデルは、画像生成、復調、塗装、超解像、操作などの最先端の手法として注目されている。
本稿では,これらの埋め込みは識別情報を含むため,ノイズ予測タスクを超えて有用であり,分類にも活用できることを示す。
注意深い特徴選択とプーリングにより、拡散モデルは、分類タスクにおいて同等な生成的識別的手法より優れていることが判明した。
論文 参考訳(メタデータ) (2023-07-17T17:59:40Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - DcnnGrasp: Towards Accurate Grasp Pattern Recognition with Adaptive
Regularizer Learning [13.08779945306727]
現在の最先端手法は、パターン認識に不可欠なオブジェクトのカテゴリ情報を無視している。
本稿では,物体分類と把握パターン認識の連成学習を実現するために,二分岐畳み込みニューラルネットワーク(DcnnGrasp)を提案する。
論文 参考訳(メタデータ) (2022-05-11T00:34:27Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - MOGAN: Morphologic-structure-aware Generative Learning from a Single
Image [59.59698650663925]
近年,1つの画像のみに基づく生成モデルによる完全学習が提案されている。
多様な外観のランダムなサンプルを生成するMOGANというMOrphologic-structure-aware Generative Adversarial Networkを紹介します。
合理的な構造の維持や外観の変化など、内部機能に重点を置いています。
論文 参考訳(メタデータ) (2021-03-04T12:45:23Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。