論文の概要: GloTok: Global Perspective Tokenizer for Image Reconstruction and Generation
- arxiv url: http://arxiv.org/abs/2511.14184v2
- Date: Wed, 19 Nov 2025 06:46:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 13:41:21.128885
- Title: GloTok: Global Perspective Tokenizer for Image Reconstruction and Generation
- Title(参考訳): GloTok: 画像再構成と生成のためのグローバル・パースペクティブ・トケナイザ
- Authors: Xuan Zhao, Zhongyu Zhang, Yuge Huang, Yuxi Mi, Guodong Mu, Shouhong Ding, Jun Wang, Rizen Guo, Shuigeng Zhou,
- Abstract要約: トークン化された特徴のより均一な意味分布をモデル化するために,Global Perspective Tokenizer(GloTok)を導入する。
量子化による再構成誤差を最小限に抑えるために, 微細な細部を復元するために, 残差学習モジュールを提案する。
標準のImageNet-1kベンチマーク実験により,提案手法が最先端の復元性能と生成品質を実現することを確認した。
- 参考スコア(独自算出の注目度): 51.95701097588426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing state-of-the-art image tokenization methods leverage diverse semantic features from pre-trained vision models for additional supervision, to expand the distribution of latent representations and thereby improve the quality of image reconstruction and generation. These methods employ a locally supervised approach for semantic supervision, which limits the uniformity of semantic distribution. However, VA-VAE proves that a more uniform feature distribution yields better generation performance. In this work, we introduce a Global Perspective Tokenizer (GloTok), which utilizes global relational information to model a more uniform semantic distribution of tokenized features. Specifically, a codebook-wise histogram relation learning method is proposed to transfer the semantics, which are modeled by pre-trained models on the entire dataset, to the semantic codebook. Then, we design a residual learning module that recovers the fine-grained details to minimize the reconstruction error caused by quantization. Through the above design, GloTok delivers more uniformly distributed semantic latent representations, which facilitates the training of autoregressive (AR) models for generating high-quality images without requiring direct access to pre-trained models during the training process. Experiments on the standard ImageNet-1k benchmark clearly show that our proposed method achieves state-of-the-art reconstruction performance and generation quality.
- Abstract(参考訳): 既存の最先端の画像トークン化手法では、事前訓練された視覚モデルから多様な意味的特徴を活用して、潜在表現の分布を拡大し、画像再構成と生成の質を向上させる。
これらの手法は、意味的分布の均一性を制限する意味的監督のために局所的に監督されたアプローチを用いる。
しかし、VA-VAEはより均一な特徴分布がより良い生成性能をもたらすことを証明している。
本稿では,グローバルな関係情報を用いて,トークン化された特徴のより均一な意味分布をモデル化するグローバル・パースペクティブ・トケナイザ(GloTok)を提案する。
具体的には、データセット全体の事前学習モデルによってモデル化されたセマンティクスをセマンティクスコードブックに転送するために、コードブックに関するヒストグラム関係学習法を提案する。
そこで我々は,量子化による再構成誤差を最小限に抑えるために,微細な細部を復元する残差学習モジュールを設計する。
上記の設計を通じて、GloTokはより均一に分散されたセマンティック潜在表現を提供し、トレーニングプロセス中にトレーニング済みのモデルに直接アクセスすることなく、高品質な画像を生成するための自己回帰(AR)モデルのトレーニングを容易にする。
標準のImageNet-1kベンチマーク実験により,提案手法が最先端の復元性能と生成品質を実現することを確認した。
関連論文リスト
- Vision Foundation Models as Effective Visual Tokenizers for Autoregressive Image Generation [52.261584726401686]
凍結した視覚基盤モデルの上に画像トークン化器を直接構築するための新しい方向を示す。
これらの設計に基づき,提案する画像トークン装置であるVFMTokは,画像再構成と生成品質の大幅な向上を実現している。
論文 参考訳(メタデータ) (2025-07-11T09:32:45Z) - Boosting Generative Image Modeling via Joint Image-Feature Synthesis [15.133906625258797]
低レベル画像潜在者を共同でモデル化するために拡散モデルを活用することで、ギャップをシームレスに橋渡しする新しい生成画像モデリングフレームワークを提案する。
我々の潜在セマンティック拡散アプローチは、純雑音からコヒーレントな画像-特徴対を生成することを学ぶ。
複雑な蒸留目的の必要をなくすことで、我々の統一設計は訓練を単純化し、強力な新しい推論戦略である表現誘導を解き放つ。
論文 参考訳(メタデータ) (2025-04-22T17:41:42Z) - Visual Autoregressive Modeling for Image Super-Resolution [14.935662351654601]
次世代の予測モデルとして, ISRフレームワークの視覚的自己回帰モデルを提案する。
大規模データを収集し、ロバストな生成先行情報を得るためのトレーニングプロセスを設計する。
論文 参考訳(メタデータ) (2025-01-31T09:53:47Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
本稿では,MMAR(Multi-Modal Auto-Regressive)確率モデルフレームワークを提案する。
離散化の手法とは異なり、MMARは情報損失を効率的に回避するために、連続的に評価された画像トークンを取り入れている。
また,数値安定性問題に対処する理論的に実証された手法と,タスク目標の生成と理解のバランスをとるトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-14T17:57:18Z) - Denoising Autoregressive Representation Learning [13.185567468951628]
DARLはデコーダのみのトランスフォーマーを用いて,画像パッチの自動回帰予測を行う。
提案手法では, 適応型ノイズスケジュールを用いて学習表現を改良し, より大規模なモデルでより長い訓練を行えることを示す。
論文 参考訳(メタデータ) (2024-03-08T10:19:00Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - Semantic Image Synthesis via Diffusion Models [174.24523061460704]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に事実上のGANベースのアプローチに従っている。
意味画像合成のためのDDPMに基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。