論文の概要: Nonparametric estimation of conditional probability distributions using a generative approach based on conditional push-forward neural networks
- arxiv url: http://arxiv.org/abs/2511.14455v1
- Date: Tue, 18 Nov 2025 12:59:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-19 16:23:53.119993
- Title: Nonparametric estimation of conditional probability distributions using a generative approach based on conditional push-forward neural networks
- Title(参考訳): 条件プッシュフォワードニューラルネットワークに基づく生成的アプローチによる条件確率分布の非パラメトリック推定
- Authors: Nicola Rares Franco, Lorenzo Tedesco,
- Abstract要約: 本稿では,条件分布推定のための生成フレームワークCPFNを紹介する。
CPFN は、$varphi(x,U)$ と $Y|X=x$ がほぼ同じ法則に従うような写像 $varphi=varphi(x,u)$ を学ぶ。
これはKulback-Leiblerの定式化から導かれる目的関数を通じて訓練される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce conditional push-forward neural networks (CPFN), a generative framework for conditional distribution estimation. Instead of directly modeling the conditional density $f_{Y|X}$, CPFN learns a stochastic map $\varphi=\varphi(x,u)$ such that $\varphi(x,U)$ and $Y|X=x$ follow approximately the same law, with $U$ a suitable random vector of pre-defined latent variables. This enables efficient conditional sampling and straightforward estimation of conditional statistics through Monte Carlo methods. The model is trained via an objective function derived from a Kullback-Leibler formulation, without requiring invertibility or adversarial training. We establish a near-asymptotic consistency result and demonstrate experimentally that CPFN can achieve performance competitive with, or even superior to, state-of-the-art methods, including kernel estimators, tree-based algorithms, and popular deep learning techniques, all while remaining lightweight and easy to train.
- Abstract(参考訳): 本稿では,条件分布推定のための生成フレームワークCPFNを紹介する。
条件密度 $f_{Y|X}$ を直接モデル化する代わりに、CPFN は確率写像 $\varphi=\varphi(x,u)$ を学習し、$\varphi(x,U)$ と $Y|X=x$ はほぼ同じ法則に従う。
これによりモンテカルロ法による効率的な条件サンプリングと条件統計の簡易推定が可能となる。
このモデルは、可逆性や逆トレーニングを必要とせず、クルバック・リーブラーの定式化から導かれる客観的関数を用いて訓練される。
ほぼ漸近的な一貫性のある結果を確立し、CPFNが軽量で訓練が容易でありながら、カーネル推定器、ツリーベースアルゴリズム、一般的なディープラーニング技術など、最先端の手法と競合し、さらに優れた性能を達成できることを実験的に実証した。
関連論文リスト
- Inference-Time Scaling of Diffusion Language Models with Particle Gibbs Sampling [70.8832906871441]
我々は、モデルを再訓練することなく、所望の報酬に向けて世代を操る方法を研究する。
従来の手法では、通常は1つの認知軌道内でサンプリングやフィルタを行い、軌道レベルの改善なしに報酬をステップバイステップで最適化する。
本稿では,拡散言語モデル(PG-DLM)の粒子ギブスサンプリングについて紹介する。
論文 参考訳(メタデータ) (2025-07-11T08:00:47Z) - BAPE: Learning an Explicit Bayes Classifier for Long-tailed Visual Recognition [78.70453964041718]
現在のディープラーニングアルゴリズムは通常、後部確率を簡易に推定することで最適分類器を解く。
この単純な手法は、厳密にバランスのとれた学術ベンチマークデータセットに有効であることが証明されている。
しかし、これは現実世界の長い尾のデータ分布には適用できない。
本稿では,データ分布のより正確な理論的推定を行う新しい手法(BAPE)を提案する。
論文 参考訳(メタデータ) (2025-06-29T15:12:50Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
事前学習したスコアベースモデルから得られた熱処理, 幾何平均, 製品分布の配列から, 効率的かつ原理的に抽出する方法を提供する。
本稿では,サンプリング品質を向上させるために,推論時間スケーリングを利用する逐次モンテカルロ(SMC)再サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-04T17:46:51Z) - Generalized Differentiable RANSAC [95.95627475224231]
$nabla$-RANSACは、ランダム化された堅牢な推定パイプライン全体を学ぶことができる、微分可能なRANSACである。
$nabla$-RANSACは、精度という点では最先端のシステムよりも優れているが、精度は低い。
論文 参考訳(メタデータ) (2022-12-26T15:13:13Z) - An unfolding method based on conditional Invertible Neural Networks
(cINN) using iterative training [0.0]
非可逆ニューラルネットワーク(INN)のような生成ネットワークは確率的展開を可能にする。
模擬トレーニングサンプルとデータ間のずれを調整した展開のための反復条件INN(IcINN)を導入する。
論文 参考訳(メタデータ) (2022-12-16T19:00:05Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
我々は、Scoreベースの生成モデルの背後にあるコアメカニックに対する最初の収束保証を証明した。
以前の作品と比較すると、時間的に指数関数的に増加するエラーや、次元の呪いに苦しむエラーは発生しない。
予測器・相関器はどちらの部分のみを使用するよりも収束性が高いことを示す。
論文 参考訳(メタデータ) (2022-06-13T14:57:35Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
ディープニューラルネットワークにおける不確実性を定量化するための,新しい単一モデルに基づくアプローチを提案する。
平均場近似式を用いて解析的に難解な積分を計算する。
実験的に,提案手法は最先端の手法と比較して競合的に機能する。
論文 参考訳(メタデータ) (2020-06-13T07:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。