論文の概要: DeepBlip: Estimating Conditional Average Treatment Effects Over Time
- arxiv url: http://arxiv.org/abs/2511.14545v1
- Date: Tue, 18 Nov 2025 14:49:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-19 16:23:53.162407
- Title: DeepBlip: Estimating Conditional Average Treatment Effects Over Time
- Title(参考訳): DeepBlip: 条件付き平均処理効果を時間とともに推定する
- Authors: Haorui Ma, Dennis Frauen, Stefan Feuerriegel,
- Abstract要約: 構造ネスト平均モデル(SNMM)のための最初のニューラルネットワークフレームワークであるDeepBlipを提案する。
提案手法は, 時間変化による不偏推定を正確に調整し, ナイマン・直交損失関数はニュアンスモデルの不特定性に対して頑健性を保証する。
- 参考スコア(独自算出の注目度): 48.20988325299593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structural nested mean models (SNMMs) are a principled approach to estimate the treatment effects over time. A particular strength of SNMMs is to break the joint effect of treatment sequences over time into localized, time-specific ``blip effects''. This decomposition promotes interpretability through the incremental effects and enables the efficient offline evaluation of optimal treatment policies without re-computation. However, neural frameworks for SNMMs are lacking, as their inherently sequential g-estimation scheme prevents end-to-end, gradient-based training. Here, we propose DeepBlip, the first neural framework for SNMMs, which overcomes this limitation with a novel double optimization trick to enable simultaneous learning of all blip functions. Our DeepBlip seamlessly integrates sequential neural networks like LSTMs or transformers to capture complex temporal dependencies. By design, our method correctly adjusts for time-varying confounding to produce unbiased estimates, and its Neyman-orthogonal loss function ensures robustness to nuisance model misspecification. Finally, we evaluate our DeepBlip across various clinical datasets, where it achieves state-of-the-art performance.
- Abstract(参考訳): 構造ネスト平均モデル(SNMM)は、時間とともに治療効果を推定する原則的なアプローチである。
特にSNMMの強みは、時間とともに治療シーケンスの結合効果を局所化された時間特異的な ``blip effect'' に分解することである。
この分解は、インクリメンタルエフェクトを通じて解釈可能性を促進し、再計算なしで最適な処理ポリシーの効率的なオフライン評価を可能にする。
しかし、SNMMのニューラルネットワークフレームワークには、本質的に連続的なg推定スキームがエンドツーエンドの勾配に基づくトレーニングを妨げているため、欠落している。
本稿では、SNMMのための最初のニューラルネットワークフレームワークであるDeepBlipを提案し、この制限を新しい二重最適化手法で克服し、すべてのblip関数の同時学習を可能にする。
DeepBlipはLSTMやトランスフォーマーのようなシーケンシャルなニューラルネットワークをシームレスに統合し、複雑な時間的依存関係をキャプチャします。
設計により,提案手法は時間変化による不偏推定を正しく調整し,そのNeyman-orthogonal loss関数はニュアンスモデルの誤特定に対する堅牢性を保証する。
最後に、DeepBlipをさまざまな臨床データセットで評価し、最先端のパフォーマンスを達成する。
関連論文リスト
- Overlap-weighted orthogonal meta-learner for treatment effect estimation over time [90.46786193198744]
ヘテロジニアス治療効果(HTE)を推定するための新しい重み付きメタラーナーを提案する。
我々のWO-Larnerは、ノイマン直交性(Neyman-orthogonality)の好ましい性質を持ち、ニュアンス関数の誤特定に対して堅牢である。
我々のWO-learnerは完全にモデルに依存しず、あらゆる機械学習モデルに適用可能であることを示す。
論文 参考訳(メタデータ) (2025-10-22T14:47:57Z) - A Simple Approximate Bayesian Inference Neural Surrogate for Stochastic Petri Net Models [0.0]
後部分布フレームワークのニューラルネットワークに基づく近似を導入する。
我々のモデルは、Gilespie-simulated SPN realizations上で訓練された1D Convolutional Residual Networkを使用する。
20%の欠落事象を持つ合成SPNでは, RMSE = 0.108で速度関数係数を回復し, 従来のベイズ手法よりもかなり高速に動作する。
論文 参考訳(メタデータ) (2025-07-14T18:31:19Z) - Fast Training of Recurrent Neural Networks with Stationary State Feedbacks [48.22082789438538]
リカレントニューラルネットワーク(RNN)は最近、Transformerよりも強力なパフォーマンスと高速な推論を実証している。
BPTTを固定勾配フィードバック機構で置き換える新しい手法を提案する。
論文 参考訳(メタデータ) (2025-03-29T14:45:52Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Gradient-Free Training of Recurrent Neural Networks using Random Perturbations [1.1742364055094265]
リカレントニューラルネットワーク(RNN)は、チューリング完全性とシーケンシャルな処理能力のために、計算の潜在能力を秘めている。
時間によるバックプロパゲーション(BPTT)は、時間とともにRNNをアンロールすることでバックプロパゲーションアルゴリズムを拡張する。
BPTTは、前方と後方のフェーズをインターリーブし、正確な勾配情報を格納する必要があるなど、大きな欠点に悩まされている。
BPTTと競合するRNNにおける摂動学習に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-14T21:15:29Z) - Unmatched uncertainty mitigation through neural network supported model
predictive control [7.036452261968766]
学習ベースMPC(LBMPC)の基本最適化問題において,深層ニューラルネットワーク(DNN)をオラクルとして利用する。
我々は、ニューラルネットワークの最後のレイヤの重みをリアルタイムで更新するデュアル・タイムスケール適応機構を採用している。
その結果,提案手法はリアルタイムに実装可能であり,LBMPCの理論的保証を担っていることがわかった。
論文 参考訳(メタデータ) (2023-04-22T04:49:48Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Neural Stochastic Contraction Metrics for Learning-based Control and
Estimation [13.751135823626493]
NSCMフレームワークにより、自律エージェントは最適な安定制御と推定ポリシーをリアルタイムで近似することができる。
これは、状態依存リカティ方程式、反復LQR、EKF、神経収縮など、既存の非線形制御と推定技術より優れている。
論文 参考訳(メタデータ) (2020-11-06T03:04:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。