論文の概要: Quantifying the Role of OpenFold Components in Protein Structure Prediction
- arxiv url: http://arxiv.org/abs/2511.14781v1
- Date: Thu, 06 Nov 2025 20:41:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-23 18:31:12.352493
- Title: Quantifying the Role of OpenFold Components in Protein Structure Prediction
- Title(参考訳): タンパク質構造予測におけるOpenFold成分の役割の定量化
- Authors: Tyler L. Hayes, Giri P. Krishnan,
- Abstract要約: 我々は,個々のOpenFoldコンポーネントが構造予測精度に与える影響を評価する。
我々は、ほとんどのタンパク質に重要ないくつかの成分を同定するが、他の成分はタンパク質間で重要である。
- 参考スコア(独自算出の注目度): 8.471500799270663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models such as AlphaFold2 and OpenFold have transformed protein structure prediction, yet their inner workings remain poorly understood. We present a methodology to systematically evaluate the contribution of individual OpenFold components to structure prediction accuracy. We identify several components that are critical for most proteins, while others vary in importance across proteins. We further show that the contribution of several components is correlated with protein length. These findings provide insight into how OpenFold achieves accurate predictions and highlight directions for interpreting protein prediction networks more broadly.
- Abstract(参考訳): AlphaFold2 や OpenFold のようなモデルではタンパク質の構造予測が変化しているが、内部構造は未解明のままである。
本稿では,個々のOpenFoldコンポーネントが構造予測精度に与える影響を体系的に評価する手法を提案する。
我々は、ほとんどのタンパク質に重要ないくつかの成分を同定するが、他の成分はタンパク質間で重要である。
さらに,いくつかの成分の寄与がタンパク質の長さと相関していることが示唆された。
これらの知見は、OpenFoldが正確な予測をいかに達成し、タンパク質予測ネットワークをより広範囲に解釈するための方向性を明らかにするかについての洞察を与える。
関連論文リスト
- Protein Large Language Models: A Comprehensive Survey [71.65899614084853]
タンパク質特異的な大規模言語モデル(Protein LLMs)は、より効率的なタンパク質構造予測、機能アノテーション、設計を可能にすることで、タンパク質科学に革命をもたらしている。
この作業は、アーキテクチャ、データセットのトレーニング、評価メトリクス、さまざまなアプリケーションをカバーする、Protein LLMの最初の包括的な概要を提供する。
論文 参考訳(メタデータ) (2025-02-21T19:22:10Z) - CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation [7.161099050722313]
タンパク質構造評価用結晶対予測学習モデル(CPE-Pro)を開発した。
CPE-Proはタンパク質の構造情報を学習し、構造間の差異を捉え、4つのデータクラスの正確なトレーサビリティを実現する。
我々は Foldseek を用いてタンパク質構造を「構造配列」にエンコードし、タンパク質構造配列言語モデル SSLM を訓練した。
論文 参考訳(メタデータ) (2024-10-21T02:21:56Z) - Structure-Informed Protein Language Model [38.019425619750265]
本稿では、構造情報をタンパク質言語モデルに抽出するためのリモートホモロジー検出の統合について紹介する。
この構造インフォームドトレーニングが下流タンパク質機能予測タスクに与える影響を評価する。
論文 参考訳(メタデータ) (2024-02-07T09:32:35Z) - Protein 3D Graph Structure Learning for Robust Structure-based Protein
Property Prediction [43.46012602267272]
タンパク質の構造に基づく特性予測は、様々な生物学的タスクにおいて有望なアプローチとして現れてきた。
現在のプラクティスは、推論中に正確に予測された構造を用いるだけで、予測精度の顕著な低下に悩まされている。
本フレームワークはモデルに依存しず,予測構造と実験構造の両方の特性予測の改善に有効である。
論文 参考訳(メタデータ) (2023-10-14T08:43:42Z) - Multi-level Protein Representation Learning for Blind Mutational Effect
Prediction [5.207307163958806]
本稿では,タンパク質構造解析のためのシーケンシャルおよび幾何学的アナライザをカスケードする,新しい事前学習フレームワークを提案する。
野生型タンパク質の自然選択をシミュレートすることにより、所望の形質に対する突然変異方向を誘導する。
提案手法は,多種多様な効果予測タスクに対して,パブリックデータベースと2つの新しいデータベースを用いて評価する。
論文 参考訳(メタデータ) (2023-06-08T03:00:50Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。